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ABSTRACT
Introduction: Biotechnological advances in association with the pressure to substitute animal 
experimentation impelled the development of in vitro models that are more physiological 
and predictive of in vivo response. Objective: To discuss advantages and limitations of three-
dimensional (3D) cell culture models. Method: Review of the scientific literature at PubMed using 
the keywords “3D culture”, spheroid, organoid, “organotypic culture”, “alternative model”, 
microfluidic, organ-on-a-chip and biotechnology, individually and in different combinations. The 
search period was from 1971 to 2017. Results: Traditional monolayer cell culture assays, although 
extensively used, do not reproduce the cell-cell and cell-extracellular matrix interactions 
that create physical and chemical gradients and that control cell functions, such as survival, 
proliferation, differentiation, migration, and protein and gene expression. 3D cell culture models 
are able to mimic more physiological microenvironment. The number of manuscripts published 
in this period reflects the scientific interest in the field. Conclusions: Although 3D models have 
unequivocally contributed to the bioengineering, morphogenesis, oncology, and toxicology fields, 
many challenges remain. The high cost of some of these models, to reproduce the mechanical 
spatiotemporal features of the tissues, as wells as the lack of standard protocols should be taken 
into account. Here we discuss the advantages and limitations of some 3D cell culture models.

KEYWORDS: 3D Culture; Alternative Model; Multicellular Spheroid; Organotypic Culture; 
Organoid

RESUMO
Introdução: Os avanços biotecnológicos em associação com a pressão para substituir a 
experimentação animal impulsionam o desenvolvimento de modelos in vitro mais fisiológicos 
e preditivos da resposta in vivo. Objetivo: Discutir vantagens e limitações de modelos 
tridimensionais (3D) de cultura de células. Método: Revisão da literatura na base PubMed 
utilizando os termos “3D culture”, spheroid, organoid, “organotypic culture”, “alternative 
model”, microfluidic, organ-on-a-chip e biotechnology, individualmente e em diferentes 
combinações. A pesquisa abrangeu o período de 1971 a 2017. Resultados: Ensaios tradicionais 
de cultura em monocamada, embora sejam amplamente utilizados, não reproduzem as 
interações célula-célula e célula-matriz extracelular, que criam gradientes físicos e químicos 
e controlam funções celulares, como sobrevivência, proliferação, diferenciação, migração e 
expressão de genes e proteínas. Modelos 3D de cultura de células são capazes de mimetizar 
um microambiente mais fisiológico. O número de publicações no período estudado reflete 
o crescente interesse científico no tema. Conclusões: Embora os modelos 3D tenham 
inequivocamente contribuído para as áreas de bioengenharia, morfogênese, oncologia 
e toxicologia, muitos desafios permanecem. O custo elevado de alguns destes modelos, 
reproduzir as características mecânicas, espaciais e temporais dos tecidos, assim como a 
necessidade de desenvolver protocolos padronizados devem ser considerados. 

PALAVRAS-CHAVE: Cultura 3D; Modelo Alternativo; Esferoide Multicelular; Cultura 
Organotípica; Organoide
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INTRODUCTION

From the last decade of the twentieth century until now, the 

technological progress in the area of   biology and health has been 

enormous. Tools and methodologies have been developed to 

enable the handling of DNA and RNA molecules and the in vitro 

development of tissues and organs with similar characteristics 

to those observed in vivo. The ability to sequence the genome 

quickly and efficiently increased significantly from 1995, the 

year of the first scientific publication on the subject, to 2001, 

when the first results of the human genome project were pub-

lished1,2. At the same time, the knowledge acquired in recent 

decades on stem cells derived from the inner layer of blastocysts 

(embryonic stem cells), adult tissues and induced pluripotency 

(iPSC – induced Pluripotent Stem Cell) has enabled substantial 

progress in the area of Regenerative Medicine, which includes 

cell therapy and bioengineering3,4,5,6,7,8, with 6,205 clinical trials 

using stem cells recorded to date (Source: https://clinicaltrials.

gov). That is, there has been a continuous expansion of the area 

of   Biotechnology, defined as “any technological application that 

uses biological systems, living organisms, or their derivatives, to 

manufacture or modify products or processes for specific use”, 

as defined by art. 2 of the text approved by the Convention on 

Biological Diversity, signed at the United Nations Conference on 

Environment and Development (Rio de Janeiro, June 5 to 14, 

1992) and approved by Legislative Decree n. 2 of 1994. Undoubt-

edly, biotechnology entails enormous possibilities, such as the 

creation of synthetic organisms9,10 and changes in how we deal 

with diseases caused by genetic mutation11,12. However, it is 

unquestionable that its likely progress in the coming years cre-

ates ethical and regulatory challenges, which have already been 

debated in developed countries11,13,14. 

In Brazil, the debate moves more slowly towards the approval 

of cellular therapies and the marketing of engineered tissues 

from human cells. The controversy over marketing rests on § 

4 of art. 199 of the Brazilian Federal Constitution which, despite 

of approving the “removal of human organs, tissues and sub-

stances”, including the “collection, processing and transfusion 

of blood and its products”, limits these practices to “transplan-

tation, research and treatment” interposing “any type of mar-

keting”15. The Brazilian legislation still has provisions such as 

Law n. 9.434 of February 4, 1997 and Law n. 11.105 of March 24, 

2005 (Biosafety Law), which provide, respectively, for the free 

disposal of organs, tissues or parts of the body and the safety 

and inspection regulations for activities involving genetically 

modified organisms (GMOs)16,17. The Brazilian National Agency of 

Sanitary Surveillance (Anvisa) has made some discrete progress 

toward the development of more significant guidelines in the 

area. This is the case of the Resolution of the Board of Directors 

(RDC) n. 9 of March 14, 2011, which “provides for the opera-

tion of Cellular Technology Centers for the purpose of clinical 

research and therapy”18. This question, although urgent and nec-

essary, will not be addressed more broadly in this study because 

it requires a specific forum. 

New biotechnology products in the health area require plat-

forms or models to evaluate their efficacy and safety prior to 

their application in clinical trials. In general, preclinical tests 

involve in vitro models with monolayer cell culture, mostly from 

immortalized and commercially available cell lineages, and in 

vivo models. In vivo tests, which use laboratory animals, are 

often unsuitable due to species-specific differences. In addition 

to that, as a consequence of the concern about the use of ani-

mals as experimental models, the policy of replacement, reduc-

tion and refinement, called the 3Rs policy, was introduced in 

the 1950s. In the United Kingdom, the National Centre for the 

Replacement, Refinement and Reduction of Animals in Research 

(NC3Rs - www.nc3rs.org.uk) was created with the mission of 

finding innovative solutions to achieve the objectives of the 

3Rs policy. This also promoted the development of alternative 

methods to animal use19,20. The biotechnological progress itself 

is a driving force to the development of reproducible alternative 

models that are closer to human biology and consequently have 

greater predictive power. 

The objective was to present several types of three-dimensional 

culturing models from a historical perspective and to critically 

discuss advantages and limitations of these as to their predictive 

power and reproducibility for implantation as an alternative to 

the use of experimental animals. In view of the vast literature, 

we did not intend to exhaust the topic and, thus, additional 

information was indicated.

METHOD

Here we present a narrative review of the literature on three-di-

mensional culture models, without exhausting the topic, given 

the vastness of related articles, which reflects today’s great sci-

entific interest in the area. The literature review was performed 

through the PubMed database (https://www.ncbi.nlm.nih.gov/

pubmed), using the following expressions: “3D culture”, spher-

oid, organoid, “organotypic culture”, “alternative model”, 

microfluidic, organ-on-a-chip and biotechnology, individually 

and in many combinations like: (a) “3D culture” OR spheroid; (b) 

“3D culture” AND “alternative model” and (c) “3D culture” AND 

“biotechnology”. The research covered the period from 1971 to 

2017 and the articles were selected for their historical and sci-

entific importance, taking into account their availability on the 

Capes portal (www.periodicos.capes.gov.br) or free access. 

Given the number of publications on the topic (total of 5,497 in 

the period, using only the keywords spheroid or “3D culture”), 

review articles were selected as a source of supplementary con-

sultation. Additional information on biotechnology was obtained 

on the page of the Brazilian government with a collection of fed-

eral laws and the 1988 Constitution (http://www4.planalto.gov.

br/legislacao). In addition, the NC3Rs website (www.nc3rs.org.

uk) was consulted for further information on the policy of reduc-

ing, replacing and refining the use of experimental animals. 
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RESULTS AND DISCUSSION

Two-dimensional and three-dimensional animal cell culture 
models: history 

Animal cell cultures were introduced in the early twentieth cen-
tury as a method of study. After the isolation of the first lineage 
of human tumor cells in the 1950s, HeLa cells were increasingly 
used21,22. Although this technique has allowed undeniable prog-
ress in the field of cell biology and is still widely used, from the 
late twentieth and early twenty-first century the limitations of 
the model have become more evident, especially with regard 
to the testing of new drugs. In a traditional culture, generally 
referred to as two-dimensional (2D) culture, the cells tend to 
form a monolayer adhered to a modified polystyrene surface 
to promote adhesion, which is obviously a substrate not found 
in vivo and which induces an artificial polarization of the cells, 
which is not observed when they are in the tissues. In vivo, 
the cells interact with each other through adhesion molecules, 
mainly of the cadherin family, and through junctional complexes 
(desmosomes, intimate or occlusive junction and adhesion junc-
tion) that bind, in their cytoplasmic portion, to cytoskeleton, 
via adapter molecules23,24,25,26. Furthermore, depending on their 
type, the cells are: (a) immersed in an extracellular matrix of 
varied composition, which includes several types of collagen, 
elastic fibers, various glycoproteins, such as fibronectin, laminin 
and vitronectin, as well as proteoglycans and glycosaminogly-
cans or b) supported on a basal lamina formed predominantly 
by laminin, in addition to collagen IV and proteoglycans. The 
cells bind to the extracellular matrix via molecules mainly of the 
integrin type, which also interact, via adapter molecules, to the 
cytoskeleton 27,28,29. These cell-cell and extracellular matrix-cell 
interactions create mechanical forces that spatially organize 
both the extracellular matrix and the cellular components (cyto-
skeleton and organelles), modulating various cellular properties, 
such as shape, differentiation, and migration26,30,31,32,33,34,35,36. 
Associated with chemical gradients generated by diffusion of flu-
ids, O2 and cellular metabolites37,38,39,40, and by the association of 
growth factors and chemokines with extracellular matrix mole-
cules27,41, these interactions form specific microenvironments or 
niches that regulate tissue homeostasis42,43,44,45. Both the complex 
cellular interactions and the physical and chemical gradients 
observed in the tissues are not reproduced in monolayer cul-
tures on plastic33,40,46,47,48,49,50,51,52,53,54. In addition to that, possibly 
as a result of their adaptation to monolayer culture conditions, 
the cells modify the pattern of gene expression49,51,54,55,56. There-
fore, it is not surprising that, depending on the study objec-
tives, the results observed with these in vitro models are very 
often not reproduced in vivo. In fact, the instigating results 
of the group of Dr. Mina Bissell57,58, obtained from cell culture 
in a three-dimensional (3D) system, changed the landscape in 
the area of   oncology, deserving an editorial on Nature called 
“Goodbye, flat biology?”59 and the launch by the National Can-
cer Institute (NCI) in the United States of a research program, 
started in October 2003, with an annual budget of 400 million 
USD for 3D culture60. This has stimulated the development of in 
vitro systems that seek to mimic the physiology and histology of 

human organs and tissues, which is reflected by the increase in 
the number of scientific publications on the subject since then51. 
A survey on the PubMed portal using the terms “3D culture” OR 
“spheroid” resulted in 5,497 articles published in the period of 
1971 to 2017. The analysis over time indicated a large increase 
in the number of articles published since the beginning of the 
twentieth century. From 1971 to 2000, the average was 37 arti-
cles a year, increasing to 261 articles a year after 2001. Only in 
2017 a total of 936 articles were published, which demonstrates 
the interest in the topic and the impact of the results obtained 
with in vitro three-dimensional models.

Types of 3D culture models

Various culture systems with an approach where a more phys-
iological, complex and three-dimensional organization of cells 
occur have been developed since the earliest reports in 1971. 
Techniques referred to as 3D culture, organotypic cultures or 
organoid cultures include systems where cells are cultured in 
three-dimensional molds of varying composition, models in 
which cells or organ fragments are mechanically sustained 
(Figure 1) and suspended aggregate models, called spheroids 
because of their rounded appearance (Figure 2). More recently, 
microproduced microfluidics culture systems and the so-called 
organ-on-a-chip systems have been introduced.

Culture in molds of biopolymers, ceramics or metal

The models that use molds seek to create an environment that 
mimics the extracellular matrix and, consequently, regulates 
the spatial organization of cells, their migration, prolifera-
tion and differentiation. A wide variety of substances, such as 
extracellular matrix molecules, natural biopolymers, synthetic 
or hybrid polymers, ceramics and metals, have been used as 
molds49,51,53,61,62,63,64. The biomaterials vary in their rigidity, poros-
ity and biodegradable potential and the choice of the material 
depends on both the cell type and the application of the study. 
Growth factors can be incorporated, favoring the proliferation 
and differentiation of the cells cultured in these molds and mak-
ing them more physiological, that is, more similar to the extra-
cellular matrix of the tissues. The variety of biomaterials and 
their applications are the subject of specific reviews49,51,53,63,64. 

Extracellular matrix or biopolymer systems were initially pro-
posed with the culturing of primary cells (obtained by ex vivo 
tissue dissociation) or established lineage, in suspension or as 
aggregates, on extracellular matrix substrate, which does not 
properly constitute a 3D culture (Figure 1A). Nevertheless, it was 
verified that this type of culture favored the proliferation and the 
differentiation of the cells, allowing them to associate in a more 
physiological way, mimicking their in vivo organization. These 
studies contributed to the understanding of the impact of extra-
cellular cell-matrix interactions on cell properties and how these 
were modified depending on the type of substrate49,63,64,65,66,68.

In an attempt to reconstitute a more physiological environment, 
the cells were encapsulated in the polymerized matrix, which 
forms a gel (Figure 1B). In this three-dimensional environment, 
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in contact with extracellular matrix molecules, different cell 
types (tumor and fibroblasts, among others) were able to migrate 
in a very similar way to that observed in vivo, which enabled the 

researchers to investigate the details of the cell-matrix interac-
tion during migration69,70. Moreover, these models allow cells to 
organize themselves in complex ways. For example, cells derived 

Figure 1. Cell culture models and organotypic cultures. (A) Biopolymer culture model. The cells are distributed in culture flasks whose surface has been 
coated with extracellular matrix molecules, such as collagen I and matrigel. (B) Model of culture in mold of natural or synthetic biopolymer. The cells 
are encapsulated in biopolymer gel, which enables their more physiological (C-D) three-dimensional organization. MDA-MB-231 (C) and luminal T-47D (D) 
human lineages of basal breast tumor were encapsulated in matrigel (3D culture), forming, respectively, structures that were similar to branched ducts 
(C) or acini (D). Phase contrast. Bars = 100 μm (C) and 50 μm (D). (E-F) Culture on mechanical support. Organs or fragments of organs (E) and cells (F) 
are cultured in an insert at the liquid-air interface.
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Figure 2. Multicellular spheroid type 3D culture model. (A) Cell suspension cultured using the hanging drop technique (above) in culture flask with 
modified surface to prevent adhesion (medium) and using the magnetic levitation technique, in which the cells are incubated with nanoparticles and 
exposed to a magnetic field. (B) Morphology of human fibroblast spheroids (B’) and human lineages of luminal breast tumor MCF-7 (B’’) and basal breast 
tumor MDA-MB-231 (B’’’). Note the irregular surface of the MDA-MB-231 spheroid compared to that of the fibroblast and the expression of the E-cadherin 
(green) adhesion molecule in MCF-7 cells. Cores stained with DAPI (in blue). Phase contrast (B’ and B’’’) and confocal microscopy (B’’). Bars = 50μm. (C) 
Spheroid scheme showing O2 and CO2 gradient from the center to the periphery and the regions of proliferation, quiescence and cell death that can be 
observed are indicated.
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from mammary glands form structures similar to branched ducts 
or acini71,72 (Figure 1C-D). That is, in a 3D environment, cells 
organize spontaneously forming complex histological structures, 
which resemble those observed in the organs from which they 
derive. For this reason, these structures have been called organ-
oids (oides means similar in Latin). However, some groups of sci-
entists restrict the term organoid to 3D models initiated with 
stem or progenitor cells, which proliferate and differentiate, 
generating a progeny that forms histological structures similar to 
those of the organs of origin63,73,74. Intestine organoids (mini-guts) 
were described in 2009 from cells with stem cell potential, iso-
lated from small intestine crypts, which were cultivated in 3D 
model of matrigel. The system allowed the proliferation and 
differentiation of these cells that originated the other popula-
tions of the intestinal epithelium (enterocytes, goblet cells and 
Paneth cells) and formed structures similar to intestinal crypts 
and villi75,76. That is, the model was able to reveal the differen-
tiation potential of the target cells, confirming their identity as 
intestinal stem cells. Brain organoids (mini-brains) were devel-
oped from an adaptation of the neuroectoderm induction model 
into embryonic bodies formed by embryonic stem cells77. In addi-
tion to understanding the morphogenesis of the nervous tissue, 
these organoids proved to be important tools in the description 
of the pathological mechanism of the Zika virus and its possible 
implication in the development of microcephaly78. The examples 
above show the potential applications of this culture system in 
understanding tissue morphogenesis and disease modeling, and 
it is therefore not surprising that a growing list of other mod-
els, such as liver, retina, pituitary, lung, can be found in sci-
entific literature63,73,74,79.

Mechanically supported 3D culture models 

Organ cultures and tissue fragments were introduced in the 
mid-twentieth century. Since the conditions of nutrient diffu-
sion and gas exchange are not ideal if tissues are immersed in 
liquid medium, the culture strategies were oriented to favor 
these processes. Thus, organ cultures utilize a support that 
allows the tissues to be in a liquid-air interface (Figure 1E). 
Initially, the supports were mounted with a microporous filter 
applied to a metal grid, collagen gel or sponge, but recently, 
commercially available porous membrane inserts are the most 
commonly used supports21,63,80,81. This type of culture maintains 
the histological characteristics of the tissues and has brought 
about advances in several areas of knowledge. Among the vari-
ous organ culture types, the fetal thymus organ culture (FTOC) 
was one of the most widely used, having contributed signifi-
cantly to the understanding of the stages and mechanisms of 
differentiation of T lymphocytes80,81,82,83.

This type of mechanically supported model was more recently 
adapted for culturing cells that traditionally are in contact 
with air in vivo, like keratinocytes and respiratory epithelium 
(Figure 1F). Cells are cultured on the porous membrane of the 
insert and exposed to the liquid-air interface. The surface of 
the membrane can be covered by extracellular matrix and, fur-
thermore, this model allows co-culturing with fibroblasts, which, 

immersed in the collagen matrix, mimic the underlying stroma. 
When cultured in a liquid medium, keratinocytes derived from 
the epidermis form a monolayer, but when exposed to a liq-
uid-air interface, they stratify and differentiate into a kerati-
nized layer63,84. Similarly, the conducting airway cells cultured 
in this system are more physiologically organized, reproducing 
the morphology of the respiratory epithelium, that is, a cylindri-
cal ciliated pseudostratified epithelium, where goblet cells can 
be observed85,86,87,88. The potential of these culture systems is 
evident, not only for understanding morphogenesis mechanisms 
and biological properties of epithelia, but above all as alter-
native models for testing new drugs and cytotoxicity. In fact, 
epidermal models like Episkin (L’Oréal and Shanghai Episkin Bio-
technology Ltd.) and respiratory epithelium such as EpiAirway™ 
(MatTek Corporation) and MucilAir™ (Epithelix) are currently 
commercially available.

3D cell aggregates: multicellular spheroid 

The 3D multicellular spheroid culture model was initially devel-
oped as cell aggregates for the study of developmental biology 
in the 1940-1950 decades89,90,91. In the 1970s, Sutherland et al.92 
boosted research in the area of   oncology by proposing the 
model for the systematic study of tumor response to radiation 
therapy and drugs. The multicellular spheroid model is based 
on the ability of cell-to-cell homotypic adhesion when its adhe-
sion to the plastic of the culture flasks is prevented. In general, 
methods (Figure 2A) like the hanging drop culture technique, 
culturing on non-adherent surfaces89,90,91,93,94 and more recently 
the magnetic levitation method - MLM, in which the cells are 
grown with nanoparticles and maintained in magnetic field cul-
ture95, allow the formation of rounded cell aggregates (Figure 
2B). The size of the spheroids varies depending on the number 
of cultured cells and the cell type. In addition, differences in 
the ability to establish cell-cell adhesions influence the forma-
tion of spheroids, which may be looser, with rough surface, or 
more firm (Figure 2B) 33,54,89,90. The model allows the co-culturing 
of different cell types and it is interesting that in these spher-
oids the cells organize spontaneously, deposit extracellular 
matrix and form specific microenvironments89,90,91,96,97. Because 
of the diffusion from the periphery in contact with the culture 
medium to the center of the spheroid, a chemical gradient of 
O2 and of cellular nutrients and metabolites is established along 
the radius of the spheroid (Figure 2C). Such diffusion can be 
improved with the use of bioreactors53. It should be said that 
various types of bioreactors are available today, but not all will 
be equally suitable.

The concentration of O2 at the center of the spheroid cor-
relates inversely with its size and, although variations are 
observed, spheroids of diameter above 500 μm generally 
develop apoptosis and necrosis of the cells located in the cen-
tral region due to hypoxia. This central zone is surrounded by 
a region of quiescent cells and, more externally, there may be 
the formation of a proliferative zone, present in the spheroids 
of tumor cells, but virtually absent in those formed by non-
transformed cells54,89,90,91,93,94,97,98,99,100,101,102. 
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Central hypoxia and the various regions formed make the model 
especially advantageous in the area of   oncology because it resem-
bles nonvascularized tumor nodules54,103. On the other hand, the 
model may also favor the study of mechanisms of angiogenesis, 
when coculture with endothelial cells is established101,104,105,106. 
It is noteworthy that the integration of endothelial cells into 
the spheroid model of murine cardiomyocytes promoted cell sur-
vival, suggesting that there was improvement in the diffusion of 
the molecules present in the culture medium105. The model has 
been used with discernment and less frequently in the area of   
tissue bioengineering because of the possible development of 
central necrosis106,107,108. 

The similarity of the spheroids with avascularized tumor nodules 
led to their application in tests with chemotherapeutic drugs 
and new drugs. Several studies have shown that while monolayer 
tumor cells were sensitive to the action of several chemother-
apeutic agents, when cultured in a spheroid model, they were 
resistant. On the other hand, some drugs proved to be effec-
tive only when the cells were in a 3D environment54,103,109,110. 
As a result of these differences, high-throughput screening 
assays for antitumor drug screening are becoming increasingly 
common54,103,111,112,113,114,115. At the same time, new analysis tools 
have been developed116,117,118, which reinforces the potential of 
this model in the area of   oncology. 

Microfluidics and organ-on-a-chip culture models

The absence of blood vessels in most 3D models impacts the 
transport of fluids and small molecules119,120. In order to get more 
physiological 3D cell culture models, techniques that enable the 
creation of a spatial control of fluids, called microfluidic tech-
niques, have been developed. Fluid flow control allows regula-
tion of chemical gradients and, consequently, the development 
of specific microenvironments. Spatial control is the basis of the 
technique and the most sophisticated models involve multidisci-
plinary teams for the creation of micrometric standardized chan-
nels (micropatterning) in biopolymer molds53,119,120,121.

Microfluidics, combined with 3D cell culture, enabled organ 
culture in chips, where microchannels filled with culture media 
interconnect specific-shaped wells that mimic the organs from 
which cells are withdrawn122. The cells are cultured in these 
specific wells and the interaction between the different cell 
types, which form the organs over the chip, takes place through 
the microchannels. This communication enables the systemic 
toxicological study123, because the microfluidic technique 
allows the interconnection of chambers that mimic different 
organs, the so-called “body-on-a-chip”124,125,126. In addition to 
this on-a-chip system, mechanical forces may be applied to the 
substrate where the cells are cultured so as to generate stimuli 
mimicking those observed in vivo, like cardiac contraction and 
inhalation and exhalation pulmonary movements127,128. These 
mechanical stimuli modulate the cellular behavior making 
the system more physiological129. The potential of these mod-
els in the field of bioengineering and animal experimentation 
replacement is undeniable.

Advantages and limitations

There is no doubt that 3D cell culture models, by better mim-
icking the in vivo conditions, have promoted great progress in 
several areas of knowledge, including the influence of the micro-
environment on various cellular properties (expression of genes 
and proteins, proliferation, death, migration and differentia-
tion), morphogenesis, disease modeling, and cytotoxicity assays 
for the evaluation of new drugs46,47,48,49,50,51,53,54,55,63,64,73. In addi-
tion, such systems open the possibility of personalized studies, 
with the culturing of cells extracted from tissues ex vivo (pri-
mary cultures) in more physiological systems. Thus, every indi-
vidual would have their own cells cultured in different models 
and their cellular response would be tested against drugs to be 
studied for the development of specific medicines or therapies 
for the individual in question74,120,130,131,132,133.

The majority of these models allow easy manipulation, rapid 
hypothesis testing and real-time analysis when compared to in 
vivo models. Therefore, these systems are candidates for alter-
native methods to the use of experimental animals. In fact, 
in some areas, such as in cosmetic cytotoxicity, in vitro 3D mod-
els are being used in replacement of in vivo tests, banned in 
several countries. However, even in this area, some limitations 
of the model must be considered, as we shall see.

The choice of the model must take into account several factors, 
like the cell type and the application of the study, for exam-
ple. This is fundamental for the reproducibility of the results. 
For instance, epithelial cells may form multiple layers or not, 
but they are founded anchor to the basement membrane and 
exhibit baso-apical polarization. On the other hand, some cell 
types are immersed in an extracellular matrix with particular 
characteristics. For example, osteoblasts are associated with 
a rigid matrix by association of hydroxyapatite crystals with 
collagen I molecules, in a process called matrix mineralization. 
That is, the type of model can have an impact on the results 
obtained. As we have seen, the components of the extracellu-
lar matrix include a wide variety of molecules that associate 
with each other and bind growth factors and cytokines, creat-
ing specific microenvironments. The differences in the compo-
sition of the matrix alter its three-dimensional organization, 
its mechanical properties and the chemical gradient27,29,32. Fur-
thermore, the polymerization of some matrix compounds can 
create structural differences that impact cellular properties. 
For example, differences in fibril diameter and porosity of the 
collagen I matrix derived from rat tail or bovine dermis had an 
impact on the migration of tumor cell lineages134. Tatiana Coel-
ho-Sampaio’s group showed that pH changes the polymerization 
pattern of laminin, which, in turn, modifies the behavior of 
several cell types68,135,136. The variation in the polymerization 
of these biopolymers also occurs due to differences in their 
extraction, as in the case of matrigel, which is commercially 
available, but varies from batch to batch in its property of 
inducing tubulogenesis, which certainly has an impact on the 
reproducibility of the results54,137. That is, it is still a challenge 
to reproduce, under culture conditions, the mechanical prop-
erties, the porosity, the elasticity and the chemical gradient 
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of the extracellular matrix of tissues. Even in the case of engi-
neered organs, the organ-on-a-chip models, mimicking the 
mass and volume ratio, or determining the various cell types 
that will be included are challenges that go beyond microfluid-
ics and the engineering of a scaffold that mimic organs138. Thus, 
it is necessary to standardize the models, with well-defined 
criteria, to reduce variations in results. In addition, the cost 
must be taken into account, as well as the lack of controlled 
methods of large-scale evaluation of the effects obtained53,54.

The use of 3D models of culture to replace the use of exper-
imental animals should take into account that even the most 
complex models only partially represent the characteristics 
of organs and tissues. In other words, the microenvironment 
is simpler than that observed in vivo and therefore several 
pathophysiological mechanisms are not reproduced. In vivo, 
several systems interact and, none the less, the microenvi-
ronment is more complex, with contribution of cells of the 
nervous and lymphohematopoietic systems, besides the vas-
cular system addressed above. Macrophages, dendritic cells, 
antigen-presenting cells, and lymphocytes, among others, 
create the microenvironment, but are absent in most mod-
els, compromising the evaluation of inflammatory effects and 
hypersensitivity47,63. Finally, the culture systems developed so 
far, in addition to spatial limitations, have temporal limita-
tions, since they are systems that mimic short-lived events, 
whereas in vivo events succeed one another, in other words, 
they progress47.

CONCLUSIONS

It is imperative to search for in vitro alternatives to the use of lab-
oratory animals lined up with the policy of 3Rs that achieves, at the 
same time, reproducible and predictive results in clinical trials. In 
this sense, 3D cell culture systems, which mimic the complexity of 
tissues, have been developed. Overall, they enable cell-cell inter-
actions and between these and the extracellular matrix, deposited 
by the cells themselves or derived from natural or synthetic matrix, 
which leads to a morphological organization of the cells and regu-
lates their biological properties. Furthermore, physical and chem-
ical gradients can form in these models, which also contributes to 
the modulation of cell behavior. The choice of the model must take 
into account not only the type of target tissue, but also the effect 
that it aims to ascertain, since the advantages, as well as the lim-
itations, are typical of each model. The very innovative aspect of 
the 3D culture models is accompanied by challenges to its valida-
tion as a substitute model for the classical tests. A fundamental 
aspect, which is the reproducibility of the results, depends on the 
harmonization of protocols, the standardization of culturing meth-
ods in different laboratories, good practices in in vitro methods, 
the conduction of multi-laboratory tests, the automation of analysis 
methods and of adverse impact assessments, as recommended by 
international organizations, such as the Organization for Economic 
Co-operation and Development – OECD. Despite these challenges, 
3D culture systems are a step toward models that are closer to tis-
sue complexity. Therefore, they are also good candidates for alter-
native models to replace the use of experimental animals. 
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