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ABSTRACT
Introduction: SARS-CoV-2 is a new type of coronavirus capable of infecting humans and 
cause the Coronavirus Disease (COVID-19), an illness that has causing enormous impacts 
in Brazil and worldwide. The disease, due to its high-level dissemination and lethality 
rates, was declared pandemic by the World Health Organization in the first half of 2020. 
Several studies have frequently indicated the detection of SARS-CoV-2 RNA fragments 
in samples from sewage networks, treatment plants and natural waters. The presence 
of SARS-CoV-2 in those environments has raised the possibility of transmission through 
the contact with contaminated waters and aerosols generated during their flow or 
treatment. Objective: Describe detection reports of the new coronavius in samples 
obtained from sewage networks, from waste sludges of treatment plants and from natural 
water bodies, and present the viability of this virus when artificially inoculated in those 
environments. Method: Integrative literature review based on scientific articles written 
in English or Portuguese, indexed in the Web of Science, Scopus, PubMed, ScienceDirect, 
Google Scholar and MedRxiv databases. Results: It was possible to highlight the risks that 
the SARS-CoV-2 poses to human and wildlife populations when present in wastewater, 
appropriate strategies to be used to limit the spread of this pathogen in aquatic matrices, 
and the importance of implementing epidemiological monitoring systems in those places. 
Conclusions: In order to reduce the risks of emerging and re-emerging outbreaks of 
COVID-19 through aqueous matrices, precautionary approaches regarding the presence of 
SARS-CoV-2 in those environments have been strongly recommended.

KEYWORDS: Epidemiological Monitoring; Disease Outbreaks; Residual Waters, Water 
Resources; Preventive Medicine

RESUMO
Introdução: O SARS-CoV-2 é um novo tipo de coronavírus capaz de infectar humanos 
e causar a Coronavirus Disease (COVID-19), enfermidade que tem causado enormes 
impactos no Brasil e no mundo. A doença, devido às suas altas taxas de disseminação 
e letalidade, foi declarada pandêmica pela Organização Mundial da Saúde no 
primeiro semestre de 2020. Vários estudos têm frequentemente indicado a detecção 
de fragmentos de RNA do SARS-CoV-2 em amostras de redes de esgoto, estações de 
tratamento e águas naturais. A presença do SARS-CoV-2 nesses ambientes tem levantado 
a possibilidade de transmissão pelo contato com águas contaminadas e aerossóis gerados 
durante seus fluxos ou tratamentos. Objetivo: Descrever relatos de detecção do novo 
coronavírus em amostras obtidas em redes de esgotos, em lodos residuais de plantas de 
tratamento e em corpos d’água naturais, e apresentar a viabilidade desse vírus quando 
inoculado artificialmente nesses ambientes. Método: Revisão integrativa de literatura 
fundamentada em artigos científicos escritos em inglês ou português, indexados nas bases 
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INTRODUCTION

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) 
is a new type of coronavirus that is infectious to humans and 
causes the coronavirus disease (COVID-19), a fatal disease that 
is highly transmissible and has been responsible for enormous 
social and economic impacts throughout planet Earth1. Accord-
ing to clinical studies, COVID-19 has manifestations in various 
human systems, including cardiovascular, renal, musculoskele-
tal, neurological, immune, visual, gastrointestinal, and espe-
cially the respiratory system2,3,4,5,6,7,8. Symptomatic patients 
have presented fever, fatigue, taste and smell dysfunctions, 
rhinorrhea, lethargy, dry cough, dyspnea, headache, muscle 
pain, vomiting, diarrhea, and severe pneumonia9,10. According 
to the World Health Organization, in the year 2020, there were 
approximately 81.5 million cases and 1.8 million deaths caused 
by COVID-19 in about 222 countries, areas and/or territories 
across he world11.

SARS-CoV-2 belongs to the family Coronaviridae and the genus 
Betacoronavirus. The virus has a genome of approximately 

30,000 single-stranded nucleotides of positive-sense RNA and 
is surrounded by a fragile lipid envelope whose surface con-
tains glycoproteins called spike, crown-shaped structures from 
which it got its name (corona is the Latin word for crown)12,13 
(Figure 1). SARS-CoV-2 has a sequence rate of change of 
approximately 1.1 x 10-3 sites per year, which represents two 
mutations per month when the world population is consid-
ered14,15. Although most of the mutations caused in the genome 
of this virus were probably deleterious or neutral, a small por-
tion caused significant changes in its infectivity and interaction 
with hosts15. The most important variants, the so-called vari-
ants of interest, were classified as Alpha (B. 1.1.7), Beta (B. 
1.351, B. 1.351.2, B. 1.351.3), Gamma (P. 1, P. 1.1, P. 1.2) and 
Delta (B. 1.617.2, AY.1, AY.2, AY.3)16. 

The Alpha variant, first described in the UK in December 2020, 
was observed to have 23 mutations, 17 amino acid changes, and 
a 46% increase in transmissibility16,17. The Beta variant, initially 
reported in South Africa in October 2020, was observed to have 

de dados do Web of Science, Scopus, PubMed, ScienceDirect, Google Scholar e MedRxiv. Resultados: Foi possível destacar os riscos 
que o SARS-CoV-2 proporciona às populações de humanos e de animais selvagens quando presente nas águas residuais, estratégias 
cabíveis de serem utilizadas para limitar a propagação desse patógeno nas matrizes aquáticas, e a importância da implementação de 
sistemas de monitoramento epidemiológico nesses locais. Conclusões: A fim de reduzir os riscos de surtos emergentes e reemergentes 
da COVID-19 por meio de matrizes aquosas, abordagens preventivas em relação à presença do SARS-CoV-2 nesses ambientes têm sido 
fortemente recomendadas.
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Source: National Institute of Allergy and Infectious Diseases – Rocky Mountain Laboratories (NIAID-RML).

Figure 1. Transmission electron micrograph of SARS-CoV-2 particles isolated from a patient. 
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23 mutations, 17 amino acid changes, and a 32% increase in 
transmissibility16,17. The Gamma variant, first reported in Brazil 
in January 2021, was observed to have 35 mutations, 17 amino 
acid changes, and a 43% increase in transmissibility16,17. The 
Delta variant, on the other hand, initially described in February 
2021 in India, was observed to have approximately 15 muta-
tions, six amino acid changes and a remarkable 60% increase 
in transmissibility when compared to the Alpha variant16,18. 
All variants of interest, Alpha, Beta, Gamma, and Delta, have 
shown a higher tendency to require hospitalization19,20. More-
over, the Delta variant presented a significant increase in viral 
load and higher risks of disease progression21,22. 

SARS-CoV-2 has been spread by direct contact with contaminated 
secretions that are carried and dispersed through the air, such as 
respiratory droplets, saliva, and airborne aerosol particles23,24. In 
addition, reports have also indicated possible viral transmission 
through indirect contact with contaminated surfaces25. Accord-
ing to viral persistence studies, aerosolized particles were able 
to provide SARS-CoV-2 infectivity for up to 16 hours26, whereas 
surfaces like plastic, stainless steel and surgical masks could do 
it for up to 7 days27,28. The best practices to contain the transmis-
sion of the disease have been protective measures like personal 
hygiene, face masks, eye protectors, physical distancing, ade-
quate ventilation of enclosed spaces, disinfection of surfaces, 
and immunization by vaccines29,30,31,32,33,34.

Elimination of SARS-CoV-2 viral particles through urine and 
feces has been commonly observed in COVID-19 patients, 
including mild, pre-symptomatic, and asymptomatic 
cases35,36,37. The presence of viral particles of the new corona-
virus in these samples, which were infectious in some cases, 
has evidenced the possibility of viral transmission through 
direct contact or aerosols generated by the excreta of contam-
inated patients38,39,40,41. In addition, the excretion of SARS-CoV-2 
through the feces and urine of patients with COVID-19 con-
firms the importance of viral monitoring in sewers and nat-
ural bodies of water, which collect and concentrate human 
excrement, and store water for public supply, irrigation or  
recreational activities42,43.

In this context, this review aimed to describe reports of detec-
tion of SARS-CoV-2 in samples obtained in sewage networks, 
sludge from treatment plants and natural bodies of water, and 
the infectivity that this virus presents when artificially inocu-
lated in these environments. The review highlighted the risks 
that SARS-CoV-2 poses to humans and wildlife when present 
in sewers, and approaches that can be adopted to limit the 
spread of this pathogen through aquatic media, including the 
implementation of epidemiological monitoring strategies in  
these environments.

METHOD

Database and search criteria

Our integrative literature review was based on scientific articles 
written in English or Portuguese and found in virtual repositories 

of public access or accessed through academic institutions. 
The methodological procedure involved electronic searches 
between July 22, 2020, and September 21, 2021, in the data-
bases of the Web of Science, Scopus, PubMed, ScienceDirect, 
Google Scholar and MedRxiv. At this stage, when conducted 
in Portuguese, the research used the combination of the fol-
lowing terms: “SARS-CoV-2”, “presença”, “detecção”, “água 
residual”, “esgoto”, “tratado”, “água natural”, “água de rio”, 
“infectividade”, “viabilidade”, “variantes”, “risco ambiental”, 
“vigilância”, and “monitoramento”. When conducted in English, 
the searches were done by combining the terms: “SARS-CoV-2”, 
“presence”, “detection”, “wastewater”, “sewage”, “treated”, 
“natural water”, “river water”, “infectivity”, “viability”, “vari-
ants”, “environmental risk”, “surveillance”, and “monitoring”.

Classification and refinement of scientific works

After the documents were obtained, they were screened for 
their titles and abstracts so we could verify whether they met 
the proposed topic and to eliminate duplicates. Then, the works 
were classified according to the following topics: (i) presence 
and detection of SARS-CoV-2 in wastewater or natural waters, 
(ii) infectivity and viability of SARS-CoV-2 in wastewater or natu-
ral waters, (iii) risks associated with the presence of SARS-CoV-2 
in wastewater or natural waters, (iv) approaches to limit the 
spread of SARS-CoV-2 through aquatic media, and (v) epidemio-
logical monitoring of SARS-CoV-2 and its variants in wastewater 
and natural waters. After classification, the articles were read 
in full and refined according to the criteria mentioned below in 
order to determine the possibility of including them as theoreti-
cal references in this study:

• The samples used in the studies were collected from aquatic 
media or in stages of sewage treatment processes;

• The studies presented detailed descriptions of the place of 
origin of the samples and the date of sample collection;

• The studies presented detailed descriptions of the proce-
dures used to determine the viability of SARS-CoV-2 and to 
detect and/or quantify fragments of the genetic material of 
the virus;

• Quantification studies of the genetic material of SARS-CoV-2 had 
values expressed in the form of “copies per sample volume”;

• Systematic, narrative or integrative reviews addressed original 
research and relevant discussions on the topic of this article.

RESULTS AND DISCUSSION

After searching the databases by combining the keywords men-
tioned in the previous topic, the integrative review retrieved a 
total of 445 scientific articles. After the initial screening, it was 
found that 221 articles fit the topic proposed in this review and 
that 224 did not fit it or were duplicates. Of the 221 articles 
with relevant content: 110 were classified as belonging to the 
topic (i); nine as belonging to the topic (ii); 24, to the topic 
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(iii); nine, to the topic (iv); and 69, to the topic (v). After the 
refinement based on the inclusion criteria, 118 scientific articles 
were chosen to be used as the theoretical foundation of this 
work, and 103 were excluded. Of the 118 articles selected and 
included in the references of this review, 53 were novel investi-
gations, 42 were literature reviews, and 23 were preprints. The 
methodological path used to prepare this review is illustrated 
in Figure 2.

Presence of SARS-CoV-2 in sewers and in natural waters

SARS-CoV-2 is often found in expectorated body fluids, vomit, 
feces and urine of individuals with COVID-19. It has entered 
sewage systems through discharge wastewater from hospitals, 
isolation centers and homes inhabited or visited by infected 
people44,45,46. Through leaks caused by infrastructure failures 

and/or untreated wastewater discharges, SARS-CoV-2 has been 
able to contaminate receiving water bodies like streams, riv-
ers, ponds, estuaries, lakes and groundwater47,48,49,50. In addi-
tion, combined sewage overflows, usually due to heavy rainfall, 
have increased the possibility of SARS-CoV-2 entering natural 
water systems12,46. Figure 3 illustrates potential paths that the 
new coronavirus can take until it reaches sewage systems and 
natural waters.

Detection of SARS-CoV-2 in samples from these environments 
has been done through molecular biology procedures, based on 
the technique of Reverse Transcription followed by Real-Time 
Polymerase Chain Reaction (RT-qPCR). The methods, also called 
quantitative PCR, have provided the copy and quantification 
of the presence of fragments of genetic material of the virus 
through in vitro replication51. RT-qPCR methods are considered 
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Figure 2. Methodological approach used in the preparation of this review.

Source: prepared by the authors, 2021.

Figure 3. Main routes that SARS-CoV-2 can take to reach sewage systems and natural waters.
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the gold standard for the detection of low amounts of genetic 
material in a sensitive and specific way in several types of 
media52. Reports indicate that the technique could successfully 
determine the diversity and abundance of various viral patho-
gens in wastewater and natural water samples, including those 
of Hepatitis A and E, Polyomavirus, Papillomavirus, Enterovi-
rus, Rotavirus, Adenovirus, Parechovirus, Salivirus, Astrovirus,  
and Zika53,54,55,56,57,58.

The analyses, although highly influenced by several phys-
ical-chemical-biological and methodological parameters, 
were able to detect concentrations ranging from 5.6 x 10 to 
4.6 x 108 particles of the SARS-CoV-2 viral genome per liter 
of untreated wastewater59,60. When carried out on samples of 
treated wastewater, that is, from the effluent generated by 
sewage treatment plants (STP), approximate amounts of up to 
1.09 x 106 of viral gene particles of the new coronavirus were 
detected per liter61. In natural waters, like river and stream 
waters, analytical methods were able to detect concentra-
tions of up to 3.28 x 106 SARS-CoV-2 genome particles per 
liter of sample62. Table 1 summarizes studies that detected 
particles of the SARS-CoV-2 viral genome in different samples 
from aquatic environments.

Viability of SARS-CoV-2 in sewage systems and natural waters

Methods applied in virology and are based on in vitro cell cul-
ture techniques and have been used to provide estimates of 
the infectious potential or viability that SARS-CoV-2 has when 
present in wastewater or natural waters96. Protocols have been 
created using techniques and reagents that do not interfere 
with the integrity of the lipid bilayer surrounding SARS-CoV-297. 
These studies have been used to assess the potential risks that 
contaminated wastewater and natural waters pose to humans, 
especially regarding possible transmission by aerosols and/or 
fecal-oral route46. 

The assessment of the risks that a sample poses to human hosts 
and also to animals, as well as the detailed understanding of 
how an animal virus has crossed species boundaries to infect 
humans, as highlighted by Andersen et al.98, has supported stud-
ies aimed at preventing future zoonotic events. In addition, to 
promote more accurate epidemiological models, research has 
considered the influence of several physical-chemical-biolog-
ical factors on the survival of SARS-CoV-2 in aquatic environ-
ments, such as temperature, pH, retention time, amount of 
organic matter, chemical reagents, and the presence of antag-
onist microorganisms52,99,100. 

Although to date no studies have proven the existence of infec-
tious particles of SARS-CoV-2 in samples from sewers, studies 
reported in the literature indicated that the new coronavirus, 
when artificially inoculated, was able to remain viable for up to 4 
days in this environment at a temperature of 24°C and 17.5 days 
at a temperature of 4°C101. In natural waters, it was seen that 
SARS-CoV-2 was able to remain active and infectious for up to 6.4 
days in river water at 24°C and 18.7 days at 4°C101. Additionally, 
the transmission of the new coronavirus through contaminated 

sewage systems was evidenced in a survey conducted in a low-in-
come community in China102. Table 2 summarizes the viability 
that infectious particles of SARS-CoV-2 can have when artificially 
inoculated in different aqueous media.

Presence of SARS-CoV-2 in sewage systems and natural waters

Fragments of the SARS-CoV-2 viral genome in sewage systems 
and natural waters have made researchers concerned about 
possible risks of indirect transmission of COVID-19 via fecal-
oral route102,106. Researchers have emphasized the possibility 
of SARS-CoV-2 infection through direct contact with sewage 
or contaminated water, aerosols generated in drainage and 
treatment systems, flushing toilets, and also through faulty 
connections of drains and sewage pipes in homes and build-
ings34,39,46. Transmission by this route was evidenced during 
the 2003 SARS-CoV-1 outbreak, when studies indicated that 
aerosolized droplets of water contaminated with feces were 
responsible for the spread of the virus in a residential building 
in Hong Kong45,107.

The presence of SARS-CoV-2 genome particles in natural waters, 
like lakes, rivers, springs, and streams, has also indicated the 
possibility of the spread of the new coronavirus in humans 
through recreation and fishing activities, as often happens with 
other diseases transmitted by enteric viral pathogens42,49,108. 
The occurrence of the virus in these environments has also 
raised the possibility of the spread of SARS-CoV-2 in domestic 
and wild animals, new hosts that would tend to propitiate the 
spread, resurgence, and evolutionary adaptation of the patho-
gen in future outbreaks through cross-infection109,110,111,112,113. 
Furthermore, the spread of SARS-CoV-2 through untreated 
wastewater has shown immense potential to have devastating 
consequences in populations of susceptible species, like terres-
trial and marine mammals114,115.

The reuse of treated water and activated sludge from treatment 
plants for processes like irrigation and fertilization of crops and 
urban parks, groundwater recharge and industrial activities has 
also been considered of concern12,116,117,118,119. To date, although 
studies have not provided sufficient data to determine the risks 
related to the spread of SARS-CoV-2 by these routes, they have 
evidenced the existence of particles of the viral genome of the 
new coronavirus in treated wastewater and in the activated 
sludge generated in treatment plants, highlighting possible risks 
associated with its reuse83,88. Similar viruses, like human Corona-
virus 229E (CoV229E) and bovine Coronavirus (BCoV), have even 
been able to remain infective for up to four and 14 days in let-
tuce (Lactuca sativa) leaves, respectively120,121.

Limiting the spread of SARS-CoV-2 through aquatic media

Inadequate sanitation and discharge of untreated sewage 
directly into surface waters have been considered possible 
sources of water and soil contamination by SARS-CoV-212,106,122. 
Consequently, the possible spread of COVID-19 among humans, 
domestic and wild animals that have had contact with contam-
inated waters has been hypothesized45,123. The possibility of 
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Table 1. Reports of detection of fragments of the SARS-CoV-2 viral genome in samples of untreated sewage, waste sludge from treatment plants, 
treated sewage and natural waters.

Country Location Sample source Viral load (copies per liter) Reference

Australia Southeast Queensland Untreated sewage 0.19 x 102 – 1.2 x 102 63

Brazil Florianópolis, Santa Catarina Untreated sewage 5.49±0.02 log10 – 6.68±0.02 
log10

64

Brazil Niterói, Rio de Janeiro Untreated sewage 30.7 – 71.2 65

China Dongxihu district Untreated sewage 0 – 1.4 x 104 66

Spain Barcelona Untreated sewage 0 – 8.3 x 102 67

Spain Valencia Untreated sewage 0 – 5.99 log10 68

United States of America Southeastern Virginia Untreated sewage 102 – 105 69

United States of America Massachusetts Untreated sewage ~103 70

United States of America Bozeman, Montana Untreated sewage 0 – 1710.8 71

United States of America Southern Louisiana Untreated sewage 0 – 3.2±0.4 log10 72

United States of America Detroit, Michigan Untreated sewage 1.24 x 104 – 2.85 x 105 73

Finland Helsinki Untreated sewage 26±0.2 log10 – 44±0.2 log10 74

Netherlands Tilburg Untreated sewage 0 – 2.2 x 106 75

India Amedabad, Gujarat Untreated sewage 5.6 x 10 – 3.5 - 102 59

Italy Bologna Untreated sewage 0 – 3.3 x 104 76

Japan Ishikawa and Toyama 
municipal administrations Untreated sewage 0 – 4.4 × 104 77

Japan Yamanashi municipal 
administration Untreated sewage 0 – 2.4 x 103 78

Pakistan Lahore, Punjab Untreated sewage 0 – 4.00 x 103 log10 79

United Kingdom Southeast Region Untreated sewage 0 – 5.78±0.07 log10 80

Spain Orense Primary sludge 0 – 24.5 x 103 81

United States of America New Haven, Connecticut Primary sludge 1.7 x 106 – 4.6 x 108 60

Mexico Santiago de Queretaro Activated sludge 0 – 10.753 x 103 log10 82

Turkey Istanbul Activated sludge 1.17 x 104 – 4.02 x 104 83

Germany North Rhine-Westphalia Treated sewage 2.7 x 103 x 37 x 103 84

Chile Santiago Treated sewage 0 – 167 x 103 85

France Paris Treated sewage ~105 86

Iran South of Tehran Treated sewage Qualitative 87

Iran Tehran Treated sewage 7.18 x 104 – 1.09 x 106 61

Israel Jerusalem Treated sewage >100 x 103 88

Italy Padua, Veneto region Treated sewage Qualitative 89

Sweden Gothenburg Treated sewage 0.14 log10 – 6.27 log10 90

China Wuhan Effluent from a hospital 
septic tank 0 – 14.7 x 103 91

Brazil State of Minas Gerais River water 0 – 1.1 x 105 92

Brazil São Paulo City Creek water 1.40 x 104 – 3.28 x 106 62

Ecuador Quito River water 2.07 x 105 – 3.19 x 106 47

Italy Milan metropolitan area River water Qualitative 48

Mexico Mexico City River water 0 – 79 x103 93

Mexico Monterrey metropolitan area Groundwater 0 – 38.3 x103 94

Serbia Belgrade River water 0 – 1.32 x 104 95

Source: prepared by the authors, 2021.



http://www.visaemdebate.incqs.fiocruz.br/ Vigil. sanit. debate 2022;10(2):77-92   |   83

Mainardi PH & Bidoia ED Risk associated with the presence of sars-cov-2 in sewage systems

secondary transmission of SARS-CoV-2 via sewage systems or con-
taminated natural waters has been a major concern in countries 
with few financial resources, which often have unsatisfactory 
sanitation and health facilities124,125. In these places, where there 
is a greater chance of transmission of waterborne pathogens115, 
improving the existing water and sewage treatment infrastruc-
ture is highly recommended.

To reduce the viral load and limit secondary transmission, 
researchers have recommended that the inactivation treat-
ment of SARS-CoV-2 in wastewater be done in a decentralized 
manner, especially in critical points that tend to have a higher 
probability of receiving the new coronavirus, such as hospitals, 
community clinics and nursing homes45,50. Wastewater treatment 
plants, which conventionally do not guarantee the inactivation 
of SARS-CoV-2, have been advised to implement effective disin-
fection systems to ensure that the virus does not spread through 
wastewater disposal or reuse schemes12,117,123.

Given the substantial risk of SARS-CoV-2 infection through expo-
sure to contaminated aerosols, it has also been widely recom-
mended that STP workers follow precautionary and safety pro-
cedures against viral exposure, such as the use of appropriate 
personal protective equipment (PPE), frequent personal and 
facility hygiene, and regular operational training118,126,127,128,129. 
There is also the need to investigate the impact of SARS-CoV-2 on 
the microbial community that performs the biological degrada-
tion of contaminants in wastewater, including possible horizontal 
gene transfers to microbial hosts45,123,130.

Epidemiological monitoring of SARS-CoV-2 in sewage systems 
and natural waters

Considering studies conducted to date, researchers have been 
advocating a precautionary and surveillance approach to the 

spread of SARS-CoV-2 and its variants through contaminated 
sewage systems and natural water. Environmental monitoring is 
considered an economical and effective measure to assess the 
circulation of pathogens in a community and it could be used as 
a diagnostic tool for the spread of SARS-CoV-2 viral particles in 
samples collected in sewage systems and natural waters122,131. 
The strategy, called Wastewater-Based Epidemiology (WBE), 
could be used as a non-invasive tool to alert communities of 
new COVID-19 infections and thus promote better measures to 
contain viral spread132,133,134.

The approach would make it possible to enumerate mild, 
pre-symptomatic and asymptomatic cases of people who do 
not have access to healthcare, who are often not detected by 
clinical diagnoses, but who can still spread COVID-19135,136,137,138. 
Thus, strategies focused on epidemiological surveillance in sew-
age systems could be used to more accurately infer the actual 
number of people infected with SARS-CoV-2 in communities and 
foster better practices for coordinating efforts, allocating health 
resources, and administering vaccination139,140,141,142. 

Sewage monitoring could also be used to quickly and simply 
detect the SARS-CoV-2 variants of interest that are circulating 
in communities and assess the dynamics of the spread of these 
variants in populations71,80,86,127,143,144,145,146,147. These analyses, for 
example, were able to monitor the mutational spectrum and 
evolutionary trends of the Alpha, Beta, Gamma, and Delta vari-
ants of SARS-CoV-2 in different areas of cities in France and the 
United States148,149. Research of this type tends to be conducted 
on previously frozen and archived wastewater samples and, 
thus, promote future studies aimed at understanding the ances-
try of SARS-CoV-2150.

Monitoring SARS-CoV-2 in sewage could also be used to assess 
the environmental impact and public health risks associated 

Table 2. Persistence of the viability of SARS-CoV-2 in different samples of sewage and natural waters (artificial inoculation).

Country Location Medium Temperature T90 (days)* T99 (days)** Virion survival 
time (days) Reference

Brazil Nova Lima, Minas 
Gerais 

River water
24°C 1.9 6.4 -

101
4°C 7.7 18.7 -

Sewage
24°C 1.2 4.0 -

4°C 5.5 17.5 -

Ireland Dublin

River water
4°C 3.8 - -

103
20°C 2.3 - -

Sea water
4°C 2.2 - -

20°C 1.1 - -

United 
States Northern Indiana

Sewage 20°C 1.6 – 2.1 3.2 – 4.3 -
104

Tap water 20°C 2.0 3.9 -

Korea Inje-gun and 
Sokcho

Tap water 23°C - - 6

105Fresh water 23°C - - 2

Sea water 23°C - - 1

* 90% reduction time of viable virions104* * Reduction time of 99% of viable virions104.
Source: prepared by the authors, 2021.
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with viral transmissibility through water bodies, slurry, biosol-
ids, aerosolized particles, and animal hosts116,151,152,153. Studies 
could be conducted to determine the efficiency of disinfection 
systems and promote strategies regarding the suitability of 
water and sewage treatment plants, including waste transport 
and discharge procedures91,119. Research would also enable the 
assessment of risks associated with natural and reused waters, 
for example, in recreational activities, fishing, irrigation of 
crops and urban areas, recharge of groundwater and industrial 
processes12,42,88,118. 

Regular monitoring of sewage systems and natural waters, as 
illustrated in Figure 4, would enable better assessment of the 
spread of SARS-CoV-2 in the hydrological cycle and its impact 
on the environment and human health45,96,127. Monitoring pro-
grams could support international collaborative repositories 
of novel coronavirus surveillance in wastewater (www.covid-
19wbec.org)154 to provide comparison of detection results on 
global scales and improve epidemiological surveillance meth-
ods in these environments52,123,155. Detection efforts, along with 
other epidemiological models like serological data, rhino pha-
ryngeal diagnoses, clinical records, and hospital admissions, 
could be used to increase the effectiveness of future public 
health interventions156,157. This approach has proven to be a 
valuable tool for authorities to assess and take quick action 
in the face of epidemic outbreaks, either by SARS-CoV-2 or by 
any other pathogen158,159,160.

CONCLUSIONS

Although there is no scientific proof yet, the possible trans-
mission of SARS-CoV-2 through direct contact or by aerosols 

generated during the flow and treatment of sewage, handling 
of waste sludge, and also by natural waters contaminated 
with the new coronavirus, has had great repercussion among 
researchers. The possibility of cross-contamination of the new 
coronavirus through intermediate hosts, wild or domestic, has 
further increased attention to the presence of this viral patho-
gen and its variants in these environments. The situation tends 
to be worse in countries with fewer resources and notoriously 
poor sanitation infrastructure. 

Therefore, in order to reduce the risks of emerging and re-emerg-
ing outbreaks of SARS-CoV-2 through aquatic media, precaution-
ary approaches have been strongly recommended regarding the 
presence of the new coronavirus in these sites. In this context, 
we emphasize the importance of new public policies in the area 
of sanitation, especially in countries with high rates of water-
borne diseases. 

The recommendations are particularly aimed at: 

1. Establishing efficient methods to detect and quantify the 
viral particles of SARS-CoV-2, as well as the pathogeni-
city and survival conditions of this virus and its variants in 
sewage, waste sludge, reuse waters, and in natural waters.

2. Identifying the best strategies for effluent treatment, 
waste management, and readjustment of water and 
sewage treatment plants, aiming at reducing the possibi-
lity of transmission of SARS-CoV-2 through the water sys-
tem. In this context, we also recommended considering 
the risks that treatment plants can pose to employees and 
nearby communities, as well as to study and implement  
prophylactic measures.

Source: prepared by the authors, 2021.

Figure 4. Possible applications of epidemiological monitoring of SARS-CoV-2 in sewage systems by wastewater-based epidemiology.
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3. Considering the possibility of implementing methods that 
inhibit the spread of SARS-CoV-2 and its variants through the 
use of reuse water or solid waste generated in STPs in manu-
facture and/or agriculture, including in industrial processes, 
groundwater recharge, irrigation of crops and urban parks.

4. Planning and implementing a surveillance system based 
on the analysis of sewage and natural waters (WBE)  
in order to monitor the spatial and temporal dynamics of 
SARS-CoV-2 and provide an early warning system for future 
emerging and/or re-emerging outbreaks of this and other  
pathogenic viruses.

5. Encouraging research aimed at understanding the survival 
and spread of SARS-CoV-2 and its variants through aquatic 

ecosystems, including the elucidation of the interactions 
that the new coronavirus has with aquatic biota, its infection 
mechanisms, and the aspects that have led to its transmis-
sion to humans.

Finally, considering the enormous harmful potential that pan-
demic diseases such as COVID-19 can have, and that three coro-
navirus outbreaks have already occurred and that possibly others 
will occur in the near future, greater investment in the areas of 
sanitation, water resources and environmental monitoring are 
sorely needed. Investment in water, sanitation and similar pro-
cesses, as emphasized by Melo et al.161, can boost the economy, 
help reestablish globally recommended production standards, 
and directly improve public health and the quality of life of 
human beings.
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