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ABSTRACT
Introduction: Noroviruses (NoV) are important causative agents of foodborne gastroenteritis 
outbreaks associated with the consumption of fruits, leafy vegetables, bivalve molluscs 
and delicatessen foods. The establishment of laboratory surveillance networks in different 
continents has demonstrated increased epidemiological importance of those viruses. In Brazil, 
the NoV infection is considered an important public health issue with socioeconomic burden, 
but the investigation of these viruses in foodborne outbreaks is still restricted to research 
laboratories. NoV infections have become more known especially with the consolidation of the 
cruise ship market in the country since 2004. Objective: This study aims to present advances 
related to NoV research in foods, highlighting features of this pathogen and strategies for 
its detection in these matrices. Method: An integrative review, collecting scientific articles 
with the objective of dealing with the main aspects of NoV, was carried out. Results: A broad 
literature review was performed, describing the main results in the literature and discussing 
aspects such as foodborne diseases, viruses as food contaminants, stability and disinfection, 
foodborne outbreaks associated with NoV, food associated with NoV contamination, NoV 
concentration and detection methods in food, risk assessment studies and prevention and 
control. Conclusions: records of foodborne outbreaks associated with NoV and the increasing 
genetic diversity of these viruses reinforce the need for laboratory and epidemiological 
surveillance, especially in developing countries, such as Brazil.

KEYWORDS: Norovirus; Foods; Disease Outbreaks; Gastroenteritis; Methods; Sanitary 
Surveillance

RESUMO
Introdução: Os norovírus (NoV) são importantes agentes causadores de gastroenterite de 
origem alimentar, com surtos associados ao consumo de frutas, vegetais folhosos, moluscos 
bivalves e alimentos de delicatessen. O aumento da importância epidemiológica destes 
vírus tem sido demonstrado pelo estabelecimento de redes laboratoriais de vigilância em 
diversos continentes. As infecções por NoV se tornaram mais conhecidas especialmente com 
a consolidação do mercado de navios de cruzeiros no país a partir de 2004. Objetivo: Este 
estudo tem como objetivo apresentar avanços relacionados à pesquisa de NoV em alimentos, 
destacando características deste patógeno e estratégias para sua detecção nestas matrizes. 
Método: Foi realizada uma revisão integrativa, pelo levantamento de artigos científicos com 
o objetivo de tratar dos principais aspectos de NoV. Resultados: Foi realizada uma ampla 
revisão da literatura, com a descrição dos principais resultados presentes na literatura 
consultada e a discussão de aspectos como doenças transmitidas por alimentos (DTA), vírus 
como contaminantes de alimentos, estabilidade e desinfecção, surtos de origem alimentar 
associados aos NoV, alimentos associados à contaminação por NoV, métodos de concentração 
e detecção de NoV em alimentos, estudos de avaliação de risco e prevenção e controle. 
Conclusões: Os registros de envolvimento de NoV em surtos de origem alimentar e a 
crescente diversidade genética destes vírus reforçam a necessidade de vigilância laboratorial 
e epidemiológica sobretudo nos países em desenvolvimento, como o Brasil. 

PALAVRAS-CHAVE: Norovírus; Alimentos; Surtos de Doenças; Gastroenterite; Métodos; 
Vigilância Sanitária 
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INTRODUCTION

First described in the 1970s with the use of electronic immu-
nomicroscopy1, Norwalk viruses, as noroviruses (NoV) were 
then known, had their epidemiological importance recognized 
only from the 1990s onward with the emergence of molecular 
techniques of cloning and nucleotide sequencing, which allowed 
the production of diagnostic supplies2,3,4,5,6. Today, NoV are rec-
ognized as the main agents that cause outbreaks and sporadic 
cases of acute non-bacterial gastroenteritis in humans7,8,9,10.

The impact of NoV infections in industrialized countries is evi-
dent in the number of epidemiological surveillance networks 
established on different continents. Electronic platforms such as 
Noronet (Netherlands), Foodborne Viruses in Europe (European 
Union), Norovirus Outbreak Reporting Tool (England), Episurv 
(New Zealand), OzFoodNet (Australia), Calicinet and National 
Outbreak Reporting System (United States) have been promot-
ing inter-laboratory integration by sharing epidemiological and 
molecular data on outbreaks, providing information on geno-
type circulation and the emergence of new variants11,12,13,14. In 
these countries, where the diagnosis is well established, NoV are 
responsible for more than 200,000 deaths/year, mainly of chil-
dren under 5 years of age9.

In Brazil, people became more aware of NoV infections after 
the consolidation of the cruise ship market in the country in 
the 2004/2005 season (http://www.abremar.com.br/down/
fgv2015.pdf), once gastroenteritis outbreaks are common in 
these settings10,15,16,17,18. Furthermore, several studies conducted 
in the country have demonstrated the impact of NoV infections 
in different populations, including outbreaks, sporadic cases, 
hospitalized patients, as well as the occurrence of asymp-
tomatic infections and cases associated with persistent diar-
rhea19,20,21,22,23,24,25,26,27,28,29,30,31,32. The environmental dissemination 
of NoV in different water matrices in the country has also been 
demonstrated with concentrations reaching 1.5E + 04 - 0.3E + 05 
(GC)/L in samples of crude sewage33,34,35,36,37,38,39,40. 

Concerning foodborne gastroenteritis, which belong to the group 
of foodborne diseases (FBD), NoV was associated with 38 out-
breaks (0.9%) out of a total of 9,719 cases reported by the Minis-
try of Health (MS) in relation to foodborne gastroenteritis, in the 
period of 2000-201441. In over 10,000 outbreaks of gastroenteri-
tis associated with food contamination reported in recent years, 
more than half did not have a defined etiologic agent. Therefore, 
as in most countries, the determination of foodborne outbreaks 
associated with NoV is based on epidemiological investigations 
and laboratory tests performed on clinical specimens of individ-
uals involved in these outbreaks42.

The detection of human NoV in food is hampered by the com-
plexity of the food matrix and by the presence of low levels of 
virus particles, which results in outbreak underreporting43,44. This 
review aims to present NoV as the main viral agents associated 
with outbreaks of foodborne gastroenteritis, describing their 
general characteristics and the progress related to the research 
of these viruses in food matrices.

METHOD

This study, prepared as an integrative review, was conducted 
according to the methodology described by Sobral and Campos45 
for the survey of scientific articles to address the main aspects 
of NoV caused by the consumption of contaminated food, as well 
as related infections. The research of scientific literature was 
carried out on the PubMed database (using keywords like: noro-
virus on foods, methodologies for norovirus on foods, norovirus 
review) and the database of the Brazilian Ministry of Health.

RESULTS AND DISCUSSION

Foodborne Diseases (FBD)

FBD is a generic term applied to a syndrome usually consisting 
of anorexia, nausea, vomiting and/or diarrhea, with or with-
out fever, attributed to the ingestion of contaminated food or 
water. However, digestive symptoms are not the only manifesta-
tions of these diseases, since extraintestinal infections in differ-
ent organs and systems may also occur, according to the agent 
involved. In addition to bacteria and toxins, FBD can also be 
caused by toxic substances, parasites, and viruses46.

The epidemiological profile of FBD in Brazil is still poorly under-
stood. Only a few states and/or municipalities have statistical 
information and data on the most common etiological agents, 
food items frequently implicated, the highest risk population 
and contributing factors46,47. There are also cases of FBD that 
are not notified to health authorities, since many foodborne 
pathogens cause mild symptoms and patients do not always seek 
medical help48.

In many countries, including Brazil, the description of outbreaks 
(in which two or more people have a similar disease after ingest-
ing food and/or water from the same source) is restricted to 
those involving a larger number of people or when the duration 
of the symptoms is longer49.

The Figure shows the main etiologic agents identified in the out-
breaks of FBD that occurred in Brazil between 2007 and 2016, 
highlighting the number of unidentified agents and the small 
number of cases associated with NoV, as well as other viral 
agents (rotavirus and hepatitis A virus).

Viruses as food contaminants

As fecal-oral transmission viruses, human enteric viruses are 
important contaminants of water and food, mainly because they 
are non-enveloped viruses that are resistant to adverse con-
ditions, both in the human body (stomach acidity) and in the 
environment50. Like NoV, hepatitis A (HAV) and E (HEV) viruses, 
enterovirus, astrovirus, parvovirus, rotavirus, adenovirus (AdV) 
40 and 41, and, more rarely, coronaviruses are also associated 
with foodborne infections51,52.
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Although the stability of these viruses in different matrices 
depends on several environmental factors, such as pH, heat 
and resistance to cleaning agents, the low NoV infectious dose 
(18 virus particles can cause disease) represents a relevant fac-
tor in the transmissibility of these viruses16,53,54,55,56,57. Ingestion 
of contaminated water or food is the main route of infection 
in these cases, however, the associated disease may occur indi-
rectly from contact with contaminated fomites58.

An important factor to be considered in the transmission of NoV 
is the large number of asymptomatic infections59,60,61. NoV out-
breaks often involve food preparation by a handler in the food 
service environment, where direct hand or gloved hand contact 
and inadequate cleaning are identified as common contributing 
factors62. Virus dispersal by food handlers has the potential for 
contamination in these environments, where large amounts of 
food are prepared in relatively small areas, involving the inter-
action of several employees63.

Norovirus

Belonging to the Norovirus genus, Caliciviridae family, NoV are a 
group of non-enveloped, icosahedral viruses, of approximately 27 
to 38 nm in diameter, named after the Greek word calyx (chalice), 
referring to the depressions of this format on the surface of the 
virus64,65. These viruses were previously referred to by other names, 
such as small round-structured viruses and Norwalk-like viruses66.

The genome consists of a single-stranded positively polarized RNA 
ranging from 7.3 to 7.5 kb, arranged in three open reading frames 
(ORF) and with a poly (A) tail at the end 3’2,3,67. ORF1 encodes a 
polyprotein, which is cleaved in at least six non-structural proteins, 
including RNA-dependent RNA polymerase (RdRp); ORF2 and ORF3 
respectively encode the VP1 and VP2 proteins of the viral capsid68.

Because of the genetic diversity of the genus, NoV are classified 
into genogroups (G) and genotypes (GG) by nucleotide sequenc-
ing of the complete genomic region coding for the VP1 capsid 

protein69. Today, NoV have been classified into seven genogroups 
(GI-GVII)70 of which three (GI, II and IV) infect humans71. 

NoV GII.4 has been associated with most outbreaks and sporadic 
cases worldwide, mainly due to the emergence of new variants 
that become dominant at intervals of 2 to 3 years72. However, in 
2013, GII.P17 appeared as a new genotype with evolution poten-
tial similar to that of GII.4, changing the epidemiology of NoV in 
the world73. The antigenic drift and recombination of hotspot, 
mainly from the ORF1/ORF2 junction region, have been reported 
as an important mechanism for the evolution of NoVs, leading to 
the emergence of new viruses74,75,76,77,78,79,80. A number of recom-
binant NoV strains have already been described, so that analysis 
of more than one region of the genome may be important for the 
detection of single or recombinant strains81.

In Brazil, the genetic diversity of NoV was demonstrated by the 
detection of different genotypes of human genogroups GI (GI.1-4, 
GI.7-8), GII (GII.1-9, GII.12-17, GII. 20-22, GII.b, GII.g, GII.e) and 
IV (GIV.1), as well as GII.4 and recombinant variants (US95_96, 
Kaiso_2003, Asia_2003, Hunter_2004, Yerseke_2006a, Den 
Haag_2006b, New Orleans_2009 and Sydney_2012)77,82,83,84,85,86.

NoV infection in humans is characterized as a self-limited gastroin-
testinal infection with symptoms including nausea, vomiting, diar-
rhea, malaise, abdominal pain, muscle aches, anorexia, headache 
and low fever. Symptoms usually begin 1 to 2 days after consump-
tion of contaminated food or water and persist for 1 to 8 days64.

Outbreak investigations have implicated vomiting as a route 
of transmission through inhaled aerosols or the direct contam-
ination of surfaces87,88,89. The infection affects all age groups, 
occurring mainly in domestic and institutional environments, 
such as hospitals, schools, restaurants, nursing homes and sea 
cruises60,65,90,91. The epidemiology of NoV is complex and influ-
enced by many factors, including population immunity, virus 
evolution, seasonality, virus stability in the environment and the 
frequent occurrence of asymptomatic infections59,60, 61,92,93,94,95.

Source: Adapted from Ministry of Health (2016)47; *data subject to updates.

Figure. Outbreaks of foodborne gastroenteritis identified in Brazil in the period 2007-2016* according to the etiological agent involved. 
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Stability and disinfection

NoV remain infectious after treatment with commonly used disin-
fectants, such as alcohols and quaternary ammonium compounds, as 
well as after heating at a temperature of 60° C for 30 minutes, 20% 
ether for 18 hours at 4° C and when exposed to pH 2.7 for three hours 
at room temperature96. They may also be stable to inactivation after 
treatment with 3.75 to 6.25 mg/L chlorine (free residual chlorine 
of 0.5 to 1.0 mg/L), the concentration that is found in water supply 
systems. However, NoV particles are inactivated after treatment with 
10 mg/L chlorine. Studies have shown that NoV are more resistant to 
chlorine inactivation than poliovirus type 1, human rotavirus (Wa), 
rotavirus simion (SA11) and bacteriophage F297. 

According to Mormann et al.98, measures used by the food pro-
cessing industry for preservation purposes and processes used 
by consumers for preparation and storage would be sufficient to 
inactivate NoV in contaminated food. Therefore, the validation 
of thermal inactivation conditions in specific foods is necessary99.

Considering the stability of NoV in the environment, Baert et al.100 

have developed a review on the efficacy of preservation methods 
used for virus inactivation in food. The authors suggested that 
food preservation methods such as heating, hydrostatic high pres-
sure processing and irradiation are more effective in inactivating 
pathogens than freezing, refrigeration, reduced water activity, 
acidification or modified atmosphere packaging. They also high-
lighted the time-temperature combination and the variable effi-
cacy of sanitizers on the food matrix in relation to viral strains.

The unavailability of cell strains for replication of human NoV in the 
laboratory resulted in the use of viruses belonging to the same genus 
as substitutes for predicting the behavior of NoV in food stability 
studies. Because they share similar structural and genetic charac-
teristics and propagate in cell culture, murine norovirus-1 (MNV-1) 
(genogroup V) has been used in these studies101,102. Also included are 
canine calicivirus (CaCV) used by Rutjes et al.101,102 on lettuce and 
cream samples, and Tulane virus (TV), a calicivirus belonging to the 
Recovirus93,104 genus. A study by Wang et al.94 demonstrated that MNV-
1, TV and HAV may be resistant on the surface of alfalfa seeds for an 
extended period (22° C for up to 50 days). These viruses could con-
taminate shoots after germination and be carried to irrigation water.

FBD outbreaks associated with NoV

According to a survey of the literature on global epidemiologi-
cal trends from outbreaks from 1983 to 2011, Matthews et al.105 

observed that the majority of NoV infections were transmitted 
by food source routes (54%), with person-to-person transmission 
coming next (26%). However, this was a meta-analysis of pub-
lished outbreaks and not necessarily based on population-based 
surveillance data. Furthermore, attack rate (defined as number 
of cases per exposed person) and distribution of genotypes are 
relevant factors for the investigation of outbreaks106.

To estimate the proportion of foodborne infections caused by 
NoV on a global scale, Verhoef et al.14 used multiple international 
outbreak surveillance systems (NoroNet, Calicinet, Episurv) and 
systematic review of the literature. They demonstrated that 

although the proportion of outbreaks caused by NoV GII.4 was 
smaller than that associated with other genotypes, the absolute 
contribution of foodborne outbreaks by NoV GII.4 to the social 
and economic costs caused by this virus is considerable.

Food associated with contamination by NoV

Fresh food subject to environmental contamination and han-
dling107, like fruit, leafy vegetables108 and bivalve molluscs109 
is most at risk of NoV contamination. These types of food, in 
addition to being eaten raw, are subject to considerable human 
handling and undergo industrial sanitary treatments that do not 
guarantee the total elimination of pathogens110. Deli and ready-
to-eat items that do not undergo further processing, like cold 
sandwiches111,112, vegetable salads 113 and confectionery prod-
ucts114, are also commonly associated with outbreaks.

Fruit and leafy vegetables

Outbreaks related to various types of products, including fresh cut 
fruits, lettuce, tomatoes, melons, salads, chives, strawberries, 
raspberries and parsley were associated with human NoV115,116,117. 
Several outbreaks involved in the consumption of fresh produce 
were known or suspected of contamination in the field, suggesting 
that irrigation water can be a route of contamination93,118.

Previous research with hydroponic lettuce cultivation has shown 
that viruses can be internalized through the root and dissemi-
nated to the aerial parts of the plant93,119. Plant growth medium 
has been shown to play a significant role in the internalization of 
the pathogen by uptake by the root system120.

In the United States, human NoV accounts for more than 40% of 
diseases related to fresh produce each year121,122 and, according 
to the European Food Safety Authority (EFSA) and the European 
Center for Prevention and Control Disease Control (ECDC), 11.6% 
of cases of viral infections were caused by consumption of veg-
etables, fruit, berries, juices and mixed foods in 32 European 
countries in the year 2013123,124.

Bivalve molluscs

Bivalve molluscs are classically known for their high risk of micro-
biological contamination, since they are natural accumulators 
of particles dispersed in water. Bacteriological parameters have 
been used as a food safety regulatory criterion to evaluate the 
contamination of these food items, as well as of their culture 
water, especially after events of potential fecal contamination125. 

However, concentrations of Escherichia coli  and coliforms in 
oysters and culture water may be reduced within a few days 
due to inactivation and elimination under environmental and 
tidal influences. However, this does not occur with viruses126. 
A characteristic of outbreaks related to this source is its fre-
quent association with multiple strains of virus observed in 
both infected patients and in the food involved127.

Most of NoV outbreaks associated with bivalve molluscs are 
linked to the consumption of oysters because they are commonly 
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eaten raw, although some outbreaks have been linked to cooked 
oysters128. Previous studies have also reported that imported fro-
zen oysters were associated with outbreaks of gastroenteritis by 
NoV in Australia and in the United States129,130.

Oyster cleansing tanks have been used to reduce bacterial con-
tamination, however, standard cleansing procedures are ineffec-
tive for viral contaminants, as demonstrated by the high NoV lev-
els detected in commercially distributed oysters in Italy and in 
the United States131,132. In artificially contaminated and cleansed 
oysters, human AdV were detected up to 168 h and MNV-1 up to 
96 h of cleansing, with viral quantification ranging from 3.2E + 
05 CG/g to 4.4E + 07 CG/g for AdV and 3.5E + 04 CG/g 2.9E + 06 
CG/g for MNV-1 after 14 days of analysis133.

A study carried out in the United Kingdom in 2011 showed that 
76.2% (n = 844) of samples collected in the oyster production 
areas showed positive results for NoV GI and/or GII134. In an out-
break of gastroenteritis associated with oyster consumption in 
a restaurant, also in the UK, NoV GI and GII were detected at 
concentrations < 100 copies/g (the theoretical limit of detection 
of the assay is 13 copies/g of the sample’s digestive gland) and 
1,736 copies/g, respectively135.

In Brazil, GI NoV were detected in Crassostera gigas cultivated 
in marine farms for 14 days, with concentrations of 1.2 E + 06 
CG/g, and GII NoV in sea water, with concentrations of 7.5 E + 
13 CG/g136. In subsequent investigations, NoV were not found by 
Souza et al.133 in naturally contaminated oysters.

Deli items and ready-to-eat food

A method for detection of NoV was evaluated by Stals et al.137 
in ready-to-eat food items like penne salad, soups, sandwiches 
and compound meals, finding that the recovery of GI and GII NoV 
was influenced by the level of viral inoculum and the type of 
food. Furthermore, MNV-1 was successfully evaluated as process 
control by the same detection methodology. 

In a gastroenteritis outbreak caused by NoV, Malek et al.138 found 
that consumption of meat from a deli resulted in 137 sick per-
sons on 13 independent rafting trips for a period of one month. 
The same virus sequence was found in fecal samples obtained 
from persons who participated of five different trips.

In Brazil, NoV GI.1 was identified in a sample of butter with herbs 
and NoV GII.4 in naturally contaminated cheese and white sauce 
samples, related to an outbreak of acute gastroenteritis on a 
cruise ship15. Also in this study, partial sequencing of the RNA 
polymerase gene showed the presence of GII.4 strains, confirm-
ing previous studies describing the incidence and distribution of 
this genotype in the world74, including Brazil21,139.

Methods of concentration and detection of NoV in foods

According to Baert et al.114, three food categories are considered 
when choosing concentration and virus detection methodologies: 
food rich in water and carbohydrates (fruits and vegetables); 
rich in protein and fat (ready-to-eat) and bivalve molluscs, due 

to the accumulation and concentration of viral particles and 
other pathogens in the digestive system67.

The steps required for the detection of viruses in these matrices 
include 1) virus concentration and purification, 2) nucleic acid 
extraction, 3) detection, and 4) confirmation140. Concentration 
of viral particles to a smaller sample volume is the most critical 
step of the process and is particularly necessary because of the 
low levels of virus that may occur in the matrices137,141,142. During 
concentration of the virus, molecules such as polysaccharides, 
proteins and fatty acids are removed to prevent inhibition of 
subsequent RNA extraction and molecular detection143,144.

Elution-concentration protocols, based on the recovery of viral 
particles from the food surface using an appropriate buffer fol-
lowed by concentration of the eluted viruses, include polyeth-
ylene glycol (PEG) precipitation, ultracentrifugation, ultrafil-
tration, immunoconcentration and cation separation. Different 
methodologies have viral recovery rates influenced by the con-
centration of inoculum and the type of food analyzed137.

The efficiency of these methods has been evaluated in several 
studies with the aim of providing information on viral recovery. 
In a study by Summa et al.145, lettuce, ham and raspberry sam-
ples were artificially contaminated with GII NoV, for comparison 
of four viral recovery methods based on ultrafiltration tech-
niques, immunomagnetic separation, ultracentrifugation and 
PEG precipitation. Ultracentrifugation produced higher recovery 
efficiencies in lettuce and ham, while PEG precipitation gener-
ated higher NoV recovery yields in raspberries.

Other methods, initially described for NoV concentration from 
different water matrices, have been adapted for recovery of 
these viruses in food matrices. The use of common methods 
for different matrices may be useful in the investigation of out-
breaks, in which samples of various origins are available. The 
negatively charged membrane filtration concentration method 
described for recovery of NoV from sea water146 was adapted for 
samples of fresh lettuce and minas cheese by the direct elution 
of these food items147,148,149.

The organic flocculation method using skim milk150 was also suc-
cessfully adapted for virus recovery from strawberries151. When 
compared to PEG precipitation methods and filtration with nega-
tively charged membranes, it showed recovery percentage of 2.5 
and 32 times higher than the other methodologies, respectively. 
Organic flocculation is a low cost method, since it uses only 
one step in the concentration of the samples, saving time and 
reagents. The Table summarizes the viral recovery rates obtained 
with these methodologies in studies conducted in Brazil.

RNA extraction is the second step in the NoV detection strategy. 
Extraction protocols involve (1) lysis of the viral capsid and (2) iso-
lation of RNA67. However, direct viral RNA extraction techniques 
involve treatment of the food product by viral elution with a reagent 
based on guanidine/phenol isothiocyanate, followed by purifica-
tion of the extracted RNA. Direct RNA extraction was applied to 
food composed of protein and/or fat, with 1 to 102 units of NoV 
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detected, which were recovered in 10 g to 30 g of hamburger, tur-
key, roasted beef, penne, tagliatelle and deli ham114,152,153. 

The first detailed description of the use of molecular methodologies 
for understanding foodborne outbreaks was described in the United 
States after the detection of NoV in contaminated ham111. Molecu-
lar methods of reverse transcription followed by polymerase chain 
reaction (RT-PCR) are used for the detection and quantification of 
NoV. The RT-qPCR quantitative method, which incorporates a flu-
orescently labeled probe or fluorescently colored dye specifically 
interleaved into the reaction mixture, has been most recommended 
because of its sensitivity, specificity and speed154.

However, this methodology based on a standard curve requires 
careful calibration and offers relative quantification with inter-
laboratory variations155. As the detection of small viral con-
centrations is the rule for food matrices, the interpretation of 
results should follow well-established criteria140. 

Despite sensitivity, the molecular assay has limitations because 
it does not provide infectivity data; and detected RNA may 
come from an integral viral particle or be a residual molecule156. 
Recently, procedures for the pretreatment and/or use of dyes 
that interleave in RNA and DNA, such as propionate monoazide 
(PMA) in molecular methodologies, have been used for the 
detection and determination of infectivity of human NoV157,158, 
with amplification occurring only in viral genomes of whole par-
ticles, i.e. infectious particles159,160.

Another important issue in detecting NoV from food matrices is 
the use of viruses as internal process control. MNV-1, Mengov 
(strain MC0), feline calicivirus (FCV), and bacteriophages such as 
MS2 and PP7148,161 are examples of viruses that have been success-
fully used135,162,163,164,165,166, with bacteriophages being more read-
ily available for laboratory production of food microbiology167.

After viral detection, another fundamental step is the molecu-
lar characterization of NoV by genome nucleotide sequencing. 
Complete sequencing of ORF2 that encodes the viral capsid VP1 
protein (1,600 base pairs) is the standard for the molecular char-
acterization of genotypes and phylogenetic studies71. However, 
partial sequencing of this region of the genome has been used 
for rapid characterization of genotypes by the use of primers 
targeting smaller regions of ORF2, designated C (5’ end of ORF2) 
and D (3’ end of ORF2)168,169,170.

For the molecular characterization of variants of GII.4, 
Vega et al.171 have developed an amplification protocol that uses 

primers that target the coding region of the P2 subdomain of 
the VP1 protein of the viral capsid, since most of the mutations 
that differentiate genotypes and variants occur in that region. 
Today, the molecular characterization of NoV is enabled by the 
National Institute for Public Health and the Environment (RVMI), 
which provides the automatic genotyping tool by the insertion of 
nucleotide sequences of the genome in this platform172.

In 2013, Technical Specifications (TS) developed by the Euro-
pean Committee for Standardization [(ECS)/TC 275/WG 6] and 
approved by the International Organization for Standardization 
(ISO) established standardized methodologies for detection of 
NoV and HAV (ISO/TS 15216 -1, 2013, and ISO/TS 15216-2, 2013) 
into high-risk food categories. It was a significant advance in 
food virology studies51.

Risk assessment studies 

Quantitative microbial risk assessment (QMRA) has become a 
valuable tool for characterizing risks of foodborne disease asso-
ciated with pathogens. Nevertheless, a substantial share of the 
studies are related to bacterial agents173,174,175. Regarding NoV, 
QMRA models were developed to evaluate the NoV risk in drink-
ing water176 and recreation water177,178. In food, QMRA studies for 
NoV are limited and concentrated on the initial contamination of 
fresh produce179,180,181.

A review of microbiological risk assessment studies on water and 
safety of fresh products revealed that viruses had higher risk 
estimates compared to bacterial agents. Leafy vegetables were 
identified as the products of greatest concern when compared to 
other foodstuffs182. 

However, a study by Stals et al.112 presented a quantitative 
model of exposure to NoV focusing on the potential transmission 
during the preparation of sandwiches. They found that a single 
dispersion of NoV per food handler could cause mean levels of 
43±18, 81±37 and 18±7 NoV particles in the sandwiches, hands 
and work surfaces, respectively.

Prevention and control

Rapid laboratory diagnosis is an important tool for targeting NoV 
outbreak control through the choice of appropriate intervention 
and control practices, such as cleaning and disinfection proto-
cols, isolation, patient grouping based on symptoms, exclusion 
of symptomatic employees or food handlers or, ultimately, estab-
lishment closure183.

Table. NoV recovery efficiencies in food.

Viral concentration methods Food samples Average NoV recovery efficiency (%) References

Filtration with negatively charged membranes
Cheese 6.0-56.3

147
Lettuce 5.2-72.3

Filtration with negatively charged membranes Lettuce 3.5-32.0 149

Filtration with negatively charged membranes Lettuce 0.06-0.67 148

Organic flocculation Strawberry 1.29-41.37 151
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Contamination control of food, water, surfaces and fomites, 
as well as the proper hygiene of food handlers, is essential to 
reduce transmission rates65. In the case of infected food han-
dlers, absence is recommended for at least 3 days after the end 
of the symptoms. Infected adults and children should be kept out 
of school and work for the same period of time. In case of out-
breaks, the operations of cruise ships, resorts, campgrounds and 
restaurants should be discontinued in order to avoid exposure 
of a new susceptible population184. Contaminated surfaces after 
episodes of vomiting or diarrhea should be disinfected with 5% 
-25% or 1,000 to 5,000 ppm hypochlorite solution185.

The increasing clinical significance of human NoV infections 
suggests the need for an effective vaccine that would promote 
blockade of transmission pathways particularly for high-risk pop-
ulations such as food handlers, military personnel, the elderly, 
children and immunodeficient individuals, thereby improving 
food safety, public health and biodefense42.

The development of vaccines for NoV has been directed to the 
expression of viral capsid proteins like virus-like particles (VLPs) 
in different vectors97,186,187. A broad-coverage bivalent vaccine 
that uses VLPs from a consensus of three NoVGII.4 variants in 
combination with NoVGI.1 is in the final stages of testing by the 
Takeda Vaccines group188,189,190. Despite the advances already 
achieved, one of the major challenges in vaccine creation is the 
great genetic variability of these viruses and the replacement of 
pandemic strains in short time intervals, as observed for influ-
enza A virus191. 

CONCLUSIONS

The records of NoV involvement in foodborne outbreaks and the 
increasing genetic diversity of these viruses emphasize the need 
for laboratory and epidemiological surveillance. This is particularly 
important in developing countries like Brazil, where not only the 
direct detection of viruses from naturally contaminated food sam-
ples, as well as the diagnosis, are still restricted to research labora-
tories. Different elution-concentration methodologies present great 
variability in the viral recovery rates, making it difficult to recover 
the NoV in different matrices.

The establishment of NoV diagnosis in the Central Laboratories of the 
states (Amazonas, Bahia, Ceará, Pará, Pernambuco, Rio de Janeiro, 
Santa Catarina and São Paulo) that are on the route of the cruise 
season by the National Program for Strengthening Health Surveillance 
in the Ports, Airports and Borders, published on December 6, 2012, 
represents significant progress in the country’s outbreak clarification 
capability. This is facilitated by the ISO/TS 15216 (2013) edition, 
which, by standardizing concentration and viral detection meth-
odologies, harmonizes the diagnosis and enables the creation of a 
national NoV diagnostic network that contributes to the determina-
tion of the real impact of NoV infections in Brazil. Furthermore, the 
fast and continuous evolution of these viruses requires an active sur-
veillance system that identifies circulating and prevalent genotypes 
that may aid in establishing a possible vaccine in the country. In this 
context, the establishment of an epidemiological surveillance net-
work integrated throughout the national territory is indispensable.
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