Assessment of animal welfare based on the level of ammonia in the microenvironment of Swiss Webster mice in a house facility

Vigil Sanit Debate, Rio de Janeiro, 2025, v.13: e02356 | Published on: 04/12/2025

Authors

DOI:

https://doi.org/10.22239/2317-269X.02356

Keywords:

Mice, Microenvironment, Animal Experimentation, Ammonia, Animal Welfare

Abstract

Introduction: Mice (Mus musculus) are one of the most used species for teaching and scientific purposes, which has characteristics that make it suitable for use in scientific research: body size, ease of handling, prolificacy, short life cycle, in addition to similarity biological and genetic, which brings it 70% to 90% closer to humans, in addition to having an accurate sense of smell, as its olfactory bulb is proportionally large when compared to the brain. Objective: To evaluate the efficiency of the relationship between the periodicity of “cage exchange” and the wood shavings or pine flakes floor/bedding used, and to determine the quality of the microenvironment and its direct impact on the animal welfare of mice kept in an experimental house facility of conventional sanitary status. Method: This article evaluated the air quality in the microenvironment of mice through the level of ammonia concentration, the Ammonia Absorption Efficiency by Floors/Beds when changing boxes and the Reactive Oxygen Species Test (ROS). Results: They indicated that microenvironments with four adult male or female individuals reach high concentrations of ammonia, although lower than 25 ppm (standard value), in both types of floor/bed, as well as changing the boxes once /week, it was unsuitable for the maintenance of individuals, already in the 5th week of life, which can infer that the frequency of changing twice/week does not induce discomfort or stress in the house facilities on the Maravalha floor/bed. Conclusions: Ammonia concentration values are directly influenced by the type of floor/bed and the frequency of cage exchange.

Downloads

Download data is not yet available.

Author Biographies

References

1. Andrade A, Pinto SC, Oliveira RS, organizadores. Animais de laboratório: criação e experimentação. Rio de Janeiro: Fundação Oswaldo Cruz; 2002.

2. Oliveira GM, Brück MA, Martins TVA. Enriquecimento ambiental: qual amelhor forma de utilização do enriquecimento ambiental para camundongos em biotério? Rio de Janeiro: Fundação Oswaldo Cruz; 2018.

3. Ministério da Ciência, Tecnologia e Inovação (BR). Lei Nº 11.794, de 8 de outubro de 2008. Estabelece procedimentos para o uso científico de animais. Diário Oficial União. 9 out 2008.

4. Ministério da Ciência, Tecnologia e Inovação (BR). Decreto Nº 6.899, de 15 de julho de 2009. Dispõe sobre a composição do Conselho Nacional de Controle de Experimentação Animal - Concea, estabelece as normas para o seu funcionamento e de sua secretaria-executiva, cria o cadastro das instituições de uso científico de animais - Ciuca, mediante a regulamentação da Lei Nº 11.794, de 8 de outubro de 2008, que dispõe sobre procedimentos para o uso científico de animais, e dá outras providências. Diário Oficial União. 16 jul 2009

5. Ministério da Ciência, Tecnologia e Inovação (BR). Guia brasileiro de produção, manutenção ou utilização de animais em atividades de ensino ou pesquisa científica. Brasília: Ministério da Ciência, Tecnologia e Inovação; 2023[acesso 30 ago 2023]. Disponível em: www.gov.br/mcti/pt-664 br/composicao/conselhos/concea/arquivos/arquivo/publicacoes-do-665 concea/guia_concea_1ed_animais-_ensino_ou_pesquisa_2023.pdf

6. Bravin JS, Maciel-Magalhães M, Pinheiro YSG, Gonçalves MAB, Ferraris FK, Amendoeira FC. Importância da inserção de grupo controle em ensaios utilizando animais de laboratório. Vigil Sanit Debate. 2021;9(1):117-122.https://doi.org/10.22239/2317-269x.01433

7. Silva CC, Oliveira CBN, Carneiro PS, Marengo EB, Mattos KA, Almeida RSC et al. Métodos alternativos para a detecção de pirogênios em produtos e ambientes sujeitos a vigilância sanitária: avanços e perspectivas no Brasil a partir do reconhecimento internacional do teste de ativação de monócitos. Vigil Sanit Debate. 2018;6(1):137-49.https://doi.org/10.22239/2317-269X.01082

8. Agência Nacional de Vigilância Sanitária – Anvisa. Resolução RDC Nº 136, de 23 de maio de 2003.dispõe sobre registro de medicamento novo. Diário Oficial União. 24 maio 2003.

9. Morais ACN, Cabral CC, Dias AVAB, Araújo MG, Mattos GLM, Moreira WC. Comparação de períodos de observação no teste de inoculação em camundongos para o isolamento do vírus da raiva. Vigil Sanit Debate. 2015;3(3):47-55.https://doi.org/10.3395/2317-269x.00223

10. Evangelista AA, Costa SM, Rossi MID, Oliveira GM. Wild mouse & laboratory mouse historical aspects, genetic selection and welfare. Rev Soc Bras Cienc Anim Lab. 2019;7(2):122-9.

11. Alcock J. Animal behavior, an evolutionary approach. 5a ed. Sunderland: Sinauer; 1993.

12. Graeff FG, Guimarães FS. Fundamentos de psicofarmacologia. São Paulo: Atheneu; 1999.

13. Suckow MA, Danneman P, Brayton C. The laboratory mouse. Boca Raton: CRC; 2001.

14. Gamble MR, Clough G. Ammonia build-up in animal boxes and its effect on rat tracheal epithelium. Lab Anim. 1976;10(2):93-104.https://doi.org/10.1258/002367776781071477

15. Harris AN, Lee HW, Osis G, Fang L, Webster KL, Verlander JW et al. Differences in renal ammonia metabolism in male and female kidney. Am J Physiol Renal Physiol. 2018;315(2):F211-22.https://doi.org/10.1152/ajprenal.00084.2018

16. Ferrecchia CE, Jensen K, Van Andel R. Intracage ammonia levels in static and individually ventilated cages housing c57bl/6 mice on 4 bedding substrates. J Am Assoc Lab Anim Sci. 2014;53(2):146-51.

17. Burn CC, Mason GJ. Absorbencies of six different rodent beddings: commercially advertised absorbencies are potentially misleading. Lab Anim. 2005;39(1):68-74.https://doi.org/10.1258/0023677052886592

18. Silva AA, Gonçalves RC. Espécies reativas do oxigênio e as doenças respiratórias em grandes animais. Cienc Rural. 2010;40(4):994-1002.https://doi.org/10.1590/S0103-84782010005000037

19. Comhair SA, Erzurum SC. Antioxidant responses to oxidant-mediated lung diseases. Am J Physiol Lung Cell Mol Physiol. 2002;283(2):L246-55.https://doi.org/10.1152/ajplung.00491.2001

20. Memarzadeh F, Harrison PC, Riskowski GL, Henze T. Comparison of environment and mice in static and mechanically ventilated isolator cages with different air velocities and ventilation designs. Contemp Top Lab Anim Sci. 2004 Jan;43(1):14-20.

21. Washington IM, Payton ME. Ammonia levels and urine-spot characteristics as cage-change indicators for high-density individually ventilated mouse cages. J Am Assoc Lab Anim Sci. 2016;55(3):260-7.

22. Balls M, Goldberg AM, Fentem JH, Broadhead CL, Burch, RL, Festing MF et al. The three Rs: the way forward: the report and recommendations of ECVAM workshop 11. Altern Lab Anim. 1995;23(6):838-66.

23. Furtado AK, Oliveira G.M. Análise Biométrica relacionada a importância do bem-estar de camundongos e a influência nos resultados dos ensaios científicos. Rev Soc Bras Cienc Anim Lab. 2018;6(2):111-28.

24. Moberg GP. Biological response to stress: implications for animal welfare. In: Moberg GP,Mench JA, editors. The biology of animal stress: basic principles and implications for animal welfare. New York: CABI;2000[acesso 20 jun 2020]. Disponível em:https://doi.org/10.1079/9780851993591.0001

25. Sterling P, Reason J. Allostasis: a new paradigm to explain arousal pathology. In: Fisher S, Reason J, editors. Handbook of life stress, cognition and health. Hoboken: John Wiley & Sons; 1988.

26. Sapolsky RM, Romero LM, Munck AU. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev. 2000;21(1):55-89.https://doi.org/10.1210/edrv.21.1.0389

27. Ülgen DH, Ruigrok SR, Sandi C. Powering the social brain: mitochondria in social behaviour. Curr Opin Neurobiol. 2023;79.https://doi.org/10.1016/j.conb.2022.102675

28. Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol. 2003;552(Pt.2):335-44.https://doi.org/10.1113/jphysiol.2003.049478

29. Ghavami S, Shojaei S, Yeganeh B, Ande SR, Jangamreddy JR, Mehrpour M et al. Autophagy and apoptosis dysfunction in neurodegenerative disorders. Prog Neurobiol. 2014;112:24-49.https://doi.org/10.1016/j.pneurobio.2013.10.004

30. Miranda Mendonça AP, Hoppe LY, Gaviraghi A, Araújo-Jorge TC, de Oliveira GM, Felippe RM et al. Highly aggressive behavior induced by social stress is associated to reduced cytochrome c oxidase activity in mice brain cortex. Neurochem Int. 2019;126:210-17.https://doi.org/10.1016/j.neuint.2019.03.017

Published

2025-12-12

Data Availability Statement

Os conteúdos de dados da pesquisa  do texto do manuscrito estão disponíveis no site do MESTRADO PROFISSIONAL EM CIÊNCIA EM ANIMAIS DE LABORATÓRIO (MPCAL), link: https://drive.google.com/file/d/1M_SZLN-MfuUCsZuuHHXkjUp3Uz-UKKyO/view em sua totalidade e sem restrições. 

Issue

Section

Original Article

Categories

How to Cite

Assessment of animal welfare based on the level of ammonia in the microenvironment of Swiss Webster mice in a house facility: Vigil Sanit Debate, Rio de Janeiro, 2025, v.13: e02356 | Published on: 04/12/2025. (2025). Health Surveillance under Debate: Society, Science & Technology , 13, 1-10. https://doi.org/10.22239/2317-269X.02356