Oviposition of Aedes aegypti and Aedes albopictus: a study in Santarém, Pará, Brazil

Vigil Sanit Debate, Rio de Janeiro, 2025, v.13: e02395| Published on: 16/12/2025

Authors

DOI:

https://doi.org/10.22239/2317-269X.02395

Keywords:

Aedes, Mosquito Control, Dengue, Amazon Ecosystem

Abstract

Introduction: Ovitraps are widely used traps for detecting and monitoring the oviposition of Aedes aegypti and Aedes albopictus, notable for their high sensitivity, low cost, and ease of use. Objective: To evaluate the oviposition of Aedes aegypti and Aedes albopictus in ovitraps installed on a university campus located in the city of Santarém, Pará, Brazilian Amazon. Method: A field study was conducted between November 2023 and February 2024 at the Federal University of Western Pará (UFOPA). The ovitraps used to detect species of the genus Aedes were made with dark plastic containers, Eucatex® straws, and an attractive solution and were installed in two distinct seasonal periods (dry and rainy) in the study area.
A total of 19 traps were set up, and meteorological data on precipitation and temperature were obtained from the National Institute of Meteorology (INMET). Based on the results, the Ovitrap Positivity Index (IPO) and the Egg Density Index (IDO) were calculated. Results: A total of 3,553 eggs of Aedes aegypti and Aedes albopictus were collected, of which 592 were recorded in the dry season and 2,961 in the rainy season. The IPO ranged from 47.4% to 100.0%, while the EDI ranged from 29.2 to 62.5. Conclusions: The ovitraps proved effective in detecting eggs of the two target species, indicating the continuous presence of females throughout both climatic periods, with a predominance in the rainy season.

Downloads

Download data is not yet available.

Author Biographies

References

1. Silva MGNM, Rodrigues MAB, Araujo RE. Sistema de aquisição e processamento de imagens de ovitrampas para o combate à dengue. Rev Bras Eng Biomed. 2012;28(4):364-74.https://doi.org/10.4322/rbeb.2012.043

2. Magalhaes T, Chalegre KDM, Braga C, Foy BD. The endless challenges of arboviral diseases in Brazil. Trop Med Infect Dis. 2020;5(2):1-6. https://doi.org/10.3390/tropicalmed5020075

3. Lwande OW, Obanda V, Lindström A, Ahlm C, Evander M, Näslund J et al. Globe-trotting Aedes aegypti and Aedes albopictus: risk factors for arbovirus pandemics. Vector-Borne Zoonotic Dis. 2020;20(2):71-81.https://doi.org/10.1089/vbz.2019.2486

4. Lordão DBMAV, Salaroli R, Silva LA, Sá RRB, Medina NCSS, Bispo CV S et al. Avaliação de novos casos de dengue no sudeste entre 2016 e 2024 um estudo ecológico. Braz J Impl Health Sci. 2024;6(5):1534-48.https://doi.org/10.36557/2674-8169.2024v6n5p1534-1548

5. Sukupayo PR, Poudel RC, Ghimire TR. Nature’s solution to Aedes vectors: toxorhynchites as a biocontrol agent. J Trop Med. 2024;2024:1-10.https://doi.org/10.1155/2024/3529261

6. World Health Organization – WHO. Dengue: global situation. Geneva: World Health Organization; 2023[acesso 25 out 2024]. Disponível em:https://www.who.int/emergencies/disease-outbreak-news/item/2023-DON498

7. Puntasecca CJ, King CH, LaBeaud AD. Measuring the global burden of chikungunya and Zika viruses: a systematic review. PLoS Negl Trop Dis. 2021;15(3):1-18.https://doi.org/10.1371/journal.pntd.0009055

8. Oliveira FP, Stoffella-Dutra AG, Barbosa CG, Costa GB, Oliveira JS, Amara AD et al. Re-emergência da febre amarela no Brasil durante 2016-2019: desafios, lições aprendidas e perspectivas.Viruses. 2020;12(11):1-15.https://doi.org/10.3390/v12111233

9. Deng SQ, Yang X, Wei Y, Chen JT, Wang XJ, Peng HJ. A review on dengue vaccine development. Vaccines.2020;8(1):1-23.https://doi.org/10.3390/vaccines8010063

10. Monath TP. Yellow fever vaccine. Exp Rev Vacc.2005;4(4):553-74.https://doi.org/10.1586/14760584.4.4.553

11. Barrera R. New tools for Aedes control: mass trapping. Curr Opin Insect Sci. 2022;52:1-7.https://doi.org/10.1016/j.cois.2022.100942

12. Resende MC, Silva IM, Ellis BR. A comparison of larval, ovitrap and MosquiTRAP surveillance for Aedes (Stegomyia) aegypti. Mem Inst Oswaldo Cruz. 2013;108(8):1024-30.https://doi.org/10.1590/0074-0276130128

13. Custódio JMO, Nogueira LMS, Souza DA, Fernandes MF, Oshiro ET, Oliveria EF et al. Abiotic factors and population dynamic of Aedes aegypti and Aedes albopictus in an endemic area of dengue in Brazil. Rev Inst Med Trop São Paulo. 2019;61:1-9.https://doi.org/10.1590/S1678-9946201961018

14. Ministério da Saúde (BR). Dengue: aspectos epidemiológicos, diagnóstico e tratamento. Brasília: Ministério da Saúde; 2002.

15. Ministério da Saúde (BR). Programa nacional de controle da dengue: amparo legal à execução das ações de campo: imóveis fechados, abandonados ou com acesso não permitido pelo morador. 2a. ed. Brasília: Ministério da Saúde; 2006.

16. Ministério da Saúde (BR). Nota técnica Nº 33/2022 CGARB/DEIDT/SVS/MS: Recomendações para a implementação da vigilância entomológica com armadilhas de oviposição (ovitrampas), para o direcionamento e monitoramento de ações de controle de mosquitos das espécies Aedes aegyp e/ou Aedes albopictus. Brasília: Ministério da Saúde; 2022[acesso 23 out 2024]. Disponível em:https://saude.rs.gov.br/upload/arquivos/202212/14131027-nota-tecnica-ms-n-33-2022-ovitrampas.pdf

17. Acioli RV. O uso de armadilhas de oviposição (ovitrampas) como ferramenta para monitoramento populacional do Aedes spp em bairros do Recife [dissertações de mestrado]. Recife: Fundação Oswaldo Cruz, 2006.

18. Ministério da Agricultura e Pecuária (BR). Análises Meteorológicas. Brasília: Ministério da Agricultura e Pecuária; 2024[acesso 23 set 2024]. Disponível em:http://www.inmet.gov.br/portal/index.php?r=bdmep/bdmep

19. Secretaria Estadual de Saúde do Pará – SES-PA. Chave ilustrada para a identificação de Aedes aegypti e Aedes albopictus. Belém: Secretaria Estadual de Saúde do Pará; 2009.

20. Gomes AC. Medidas dos níveis de infestação urbana para Aedes (stegomyia) Aegypti e Aedes (stegomyia) albopictus em programa de vigilância entomológica. Inf Epidemiol Sus. 1998;7(3):49-57.https://doi.org/10.5123/S0104-16731998000300006

21. Figueiredo RMP, Naveca FG, Oliveira CM. Co-infection of Dengue virus by serotypes 3 and 4 in patients from Amazonas, Brazil. Rev Inst Med Trop São Paulo. 2011;53(6):321-3.https://doi.org/10.1590/S0036-46652011000600004

22. Facchinelli L, Badolo A, McCall PJ. Biology and behaviour of Aedes aegypti in the human environment: opportunities for vector control of arbovirus transmission. Viruses.2023;15(3):1-19.https://doi.org/10.3390/v15030636

23. Cordeiro JU. Estudo da eficácia de uma armadilha para o monitoramento do mosquito Aedes aegypti (Diptera:Culicidae) [dissertação de mestrado]. São Paulo:Universidade de São Paulo; 2021.

24. Espinal MA, Andrus JK, Jauregui B, Waterman SH, Morens DM, Santos JI et al. Emerging and reemerging Aedes-transmitted arbovirus infections in the region of the americas: implications for health policy. Am J Public Health. 2019;109(3):387-92.https://doi.org/10.2105/AJPH.2018.304849

25. Souza-Neto JA, Powell JR, Bonizzoni M. Estudos de competência do vetor Aedes aegypti: uma revisão. Infect Genet Evol. 2019;67:191-209.https://doi.org/10.1016/j.meegid.2018.11.009

26. Lima-Camara TN, Honório NA, Lourenço OR. Frequência e distribuição espacial de Aedes aegypti e Aedes albopictus (Diptera, Culicidae) no Rio de Janeiro, Brasil. Cad Saúde Pública. 2006;22(10):2079-84.https://doi.org/10.1590/S0102-311X2006001000013

27. Paupy C, Delatte H, Bagny L, Corbel V, Fontenille D. Aedes albopictus, an arbovirus vector: from the darkness to the light. Microbes Infect. 2009;11(14-15):1177-85.https://doi.org/10.1016/j.micinf.2009.05.005

28. Kraemer MUG, Sinka ME, Duda KA, Mylne AQN, et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. eLife. 2015;4:1-18.https://doi.org/10.7554/eLife.08347

29. Laporta GZ, Potter AM, Oliveira JFA, Bourke BP, Pecor DB, Linton YM. Distribuição global de Aedes aegypti e Aedes albopictus em um cenário de mudança climática de rivalidade regional. Insects. 2023;14(1):1-18.https://doi.org/10.3390/insects14010049

30. Fernandes CM. Mapeamento da infestação por Aedes aegypti e Culex spp. adultos em Campinas (SP), Brasil [dissertação de mestrado]. São Paulo: Universidade de São Paulo; 2024.

31. Rosa-Silva H, Cardoso JG, Reis-Júnior R, Corgosinho PHC, Faria ML, Ribeiro SP et al. Coexistence and spatial distribution of invasive and sylvatic container-breeding mosquitoes in city–forest ecotone within the brazilian semi-arid. Diversity.2023;15(7):1-12.https://doi.org/10.3390/d15070822

32. Ribeiro AF, Marques GRAM, Voltolini JC, Condino MLF. Associação entre incidência de dengue e variáveis climáticas. Rev Saúde Pública. 2006;40(4):671-6.https://doi.org/10.1590/S0034-89102006000500017

33. Peixoto TM, Cerqueira EM, Andrade JN, Coelho MMP. Práticas educativas no controle da dengue: atuação dos agentes de combate às endemias e percepção dos moradores. Revisa. 2020;9(2):262-70.

34. Mackay AJ, Yan J, Kim CH, Barreaux AMG, Stone CM. Larval diet and temperature alter mosquito immunity and development: using body size and developmental traits to track carry-over effects on longevity. Parasit Vectors.2023;16:1-3.https://doi.org/10.1186/13071-023-06037-z

35. Beserra EB, Fernandes CRM, Silva SUO. Efeitos da temperatura no ciclo de vida, exigências térmicas e estimativas do número de gerações anuais de Aedes aegypti (Diptera, Culicidae). Iheringia Ser Zool. 2009;99(2):142-8.https://doi.org/10.1590/0073-47212009000200004

36. Jiménez-Alejo A, Morales-Pérez A, Nava-Aguilera E, Flores-Moreno M, Apreza-Aguilar S, Carranza-Alcaraz W et al. Pupal productivity in rainy and dry seasons: findings from the impact survey of a randomised controlled trial of dengue prevention in Guerrero, Mexico. BMC Public Health. 2017;17(Suppl.1):1-8.https://doi.org/10.1186/s12889-017-4294-8

37. Barreto E, Resende MC, Eiras AE. Avaliação da armadilha ovitrampas iscada com atraente natural para monitoramento de Aedes spp. em Dilli, capital do Timor-Leste. Cienc Saúde Colet. 2020;5(2):665-72.https://doi.org/10.1590/1413-81232020252.12512018

38. Silva RW. Análise da estrutura populacional de mosquitos Aedes aegypti (Diptera: Culicidae) em diferentes estratos urbanos na cidade de São Paulo, utilizando morfometria geométrica alar e marcadores microssatélites [dissertação de mestrado]. São Paulo: Universidade de São Paulo; 2017.

39. Barbosa EP. Diversidade morfológica de Aedes aegypti: transecto entre o porto de Santos e noroeste do Estado de São Paulo [monografia]. São Paulo: Instituto Butantã; 2022.

40. Baik LS, Nave C, Au DD, Guda T, Chevez JA, Ray A et al. Circadian regulation of light-evoked attraction and avoidance behaviors in daytime- versus nighttimebiting mosquitoes. Curr Biol. 2020;17;30(16):3252-9.https://doi.org/10.1016/j.cub.2020.06.010

41. Farnesi LC, Barbosa CS, Araripe LO, Bruno RV. The influence of a light and dark cycle on the egg laying activity of Aedes aegypti (Linnaeus, 1762) (Diptera: Culicidae). Mem Inst Oswaldo Cruz. 2018;113(4):1-6.https://doi.org/10.1590/0074-02760170362

42. Menda G, Nitzany EI, Shamble PS, Wells A, Harrington LC, Miles RN et al. The long and short of hearing in the mosquito Aedes aegypti. Current Biology. 2019;29(4):709-14.https://doi.org/10.1016/j.cub.2019.01.026.

Published

2025-12-16

Issue

Section

Original Article

Categories

How to Cite

Oviposition of Aedes aegypti and Aedes albopictus: a study in Santarém, Pará, Brazil: Vigil Sanit Debate, Rio de Janeiro, 2025, v.13: e02395| Published on: 16/12/2025. (2025). Health Surveillance under Debate: Society, Science & Technology , 13, 1-8. https://doi.org/10.22239/2317-269X.02395

Most read articles by the same author(s)